

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 1

Scripting Tutorial - Lesson 1

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

TI-Nspire 3.0 adds powerful new functionality to the platform in the form of Lua
scripting capabilities. Lua is a fast modern scripting language. Scripts written in Lua
(even using a simple text editor) may be converted to TI-Nspire documents using the
TI-Nspire Scripting Tool or by third-party tools. Such scripts add exciting new
possibilities to TI-Nspire's native capabilities for creating documents for teaching and
learning.

The power available to experienced programmers using the Lua scripting capabilities
now built into TI-nspire is enormous, and the sky is the limit in terms of what is now
possible, as exemplified by the range of sampler activities. However, there are
opportunities for even those without a programming background to make use of
these features in more limited but still potentially useful and powerful ways. These
beginners' tutorials offer some practical ways in which teachers and students may
begin to use Lua to create their own documents.

The focus here will be on using Lua initially to display text. Dynamic graphs and
images will follow later.

Lesson 1.1: First Steps with Lua and TI-Nspire

For this first lesson, we will use the third-
party Lua tool called Oclua, developed by
Olivier Armand. Begin by downloading the
Oclua package from the linked site or just
grab the zipped folder of supporting
documents available for this tutorial. Make
frequent use of the pause button when
watching videos in this series - it may take
several views to follow everything that is
happening.

Oclua supports actual Lua scripting within
either TI-Nspire handheld or software on
any platform. A script may be written in
Notes, then copied and pasted into the first page of the document, oclua.tns, where it
will be displayed as a Lua page. No need for additional software - fast and easy and a
great way to get the feel for this new tool.

As you see from the animated gif image, once downloaded, open the file oclua.tns
and you will see what looks like a blank page, except for the text at the bottom,
which invites you to "Paste some Lua code here to run it" (Ignore the two horizontal
lines you see on the image - they are an artifact of the software used to record this
animation and will not appear in your version of this file).

Insert a new Notes page. As shown, type your first Lua function:

function on.paint(gc)

gc:drawString("hello world", 0, 20)

end

The indenting of the second line is optional, but often helpful when working with
longer scripts. The case of the text is NOT optional - Lua is a case-sensitive
language and you must enter all commands exactly as shown here. So everything in
this example is in lower case, except the "S" in "drawString".

As instructed in the image, select all (ctrl-a works just fine in Notes) and then go
back to page 1.1 and paste (yes, you can use ctrl-v). You should see the text "hello
world" appear in the top left corner of the window.

While most of the Lua scripts that you will see in the wild look enormously
complicated (and, in fact, they can be and usually are!) a successful Lua script can be

complicated (and, in fact, they can be and usually are!) a successful Lua script can be
as simple as this!

What do we learn from this?

The syntax for defining a function in Lua is much the same as it is anywhere
else:

function name(argument)

some instruction

end

In our example, the function is a standard Lua function, called "on.paint". You
will see it in most (if not all) Lua scripts you look at, and it clearly delivers what
it promises: "on" running this function, the contents are "painted" to the screen.

"gc" stands for "graphics context" and is used when graphics of any type are
defined. You see within the function, the single line of instruction is defined in
terms of this "gc" term. Don't worry too much about this - you will get used to it
very quickly.

The instruction line of this function is also pretty explanatory:
gc:drawString("hello world", 0, 20) means that, within the graphics context
defined by this function, the string "hello world" will be drawn at location (0, 20)
on the window.

The coordinate system begins from the top left corner as the origin. So this text
will begin at the left side of the window and 20 units down (yes, an x-y
coordinate system just like we are used to, only the top of the screen is 0 and
you count up to go down!)

You should now take a few moments and play! Change the text, and change the x
and y coordinates. Try to place the text in the center of the window - what does this
teach you about the window dimensions? If you are on the software, switch between
Computer and HandHeld views - you will see that, centering for one does NOT center
for the other!

Pause for breath before continuing.

But Why?

It is perhaps timely to stop for a moment and ask - Why bother? There are much
easier ways to put text on a screen.

Two very important properties of a Lua window on TI-Nspire as opposed to say, the
same thing displayed using Notes:

1. Click on any Lua-based
window. Drag around - try and
edit it. It is secure. Any text
you display in such a window
CANNOT be edited or changed
by the user of your document.
In Notes, of course, the user
can readily change - and
indeed break - whatever the
author has taken the time and
care to display there. AND, just
as we can in Notes, the text we
display can be static or
dynamic. So we can easily
create powerful learning tools
just as we can with Notes, but
in a secure display
environment.

2. In the second part of this
lesson, you will learn how to
control the font size, color and
style, and how to easily center
text on a line or, indeed, in the
center of the window. In Lua
we have significant control
over the way our text is
displayed - much moreso than
using the native TI-Nspire text
facilities. In terms of color, you
have ready access to millions
of colors, and size is similarly
unrestricted. Take a moment
to watch the short

Click anywhere on this image to view a short video
demonstration

to watch the short
demonstration video to the
right, "Derive the quadratic
formula". It illustrates some of
the possibilities for using Lua.

Lesson 1.2: A Little More Interesting?

So, back to work. Are you ready
for a little more?

If you are not on page 1.2,
return to that page. We will add
a couple of lines to our on.paint
script.

function on.paint(gc)

gc:setFont("sansserif",
"b", 12)

gc:setColorRGB(158,
5, 8)

gc:drawString("This is
my text", 20, 20)

end

Click anywhere on this image for a video demonstration

Once again, study these new commands and see what they do - have a play and try
different values. You will quickly appreciate that setFont takes three inputs (family
("serif" or "sanserif"), style ("b" for bold, "r" for regular, "i" for italic, or "bi" for bold
italic) and, of course, size).

setColorRGB is a simple way to access lots of colors: RGB stands for Red, Green,
Blue, where red is (255, 0, 0), Green is (0, 255, 0) and Blue (0, 0, 255). Clearly there
are many colors in between and you can play around with numbers or, like me, you
can go access lists online or just download the PDF that I use. My trusted color
consultant advises me that burgundy (158, 5, 8) and navy (20, 20, 138) work very
well together! And so much nicer than just a palette of 9 to 15 colors as currently
available within TI-Nspire!

If you are still with us, then you are doing very well in your first steps with Lua. We
will finish this first lesson by learning how to center that text, and in doing so
introduce the important idea of local and global variables. In this case, we learn that
Lua supplies all sort of useful commands, such as platform.window:height() and
platform.window:width(). As the names suggest, these commands may be used to
deliver to you the values for the current window. If we define these as variables, like
w and h, then we can do some simple calculations to determine the best place to put
our text! We will define these variables as local to our function, but they can be
defined outside the function in a larger script. More on that later.

We introduce two more Lua commands as well: getStringWidth and getStringHeight.
These should also be self-explanatory. Return to page 1.2 in Notes.

function on.paint(gc)

local
h=platform.window:height()

local
w=platform.window:width()

gc:setFont("sansserif", "b",
12)

gc:setColorRGB(158, 5, 8)

local sw =
gc:getStringWidth("This is
my text")

local sh =
gc:getStringHeight("This is
my text")

gc:drawString("This is my
text", w/2 - sw/2, h/2 +
sh/2)

end

Click anywhere on this image for a video demonstration

So we define width and height as simple local variables, w and h. We can also get the
string dimensions. Then to center the string horizontally, take the middle of the
window (w/2) then go back by half the length of the string (w/2 - sw/2). Vertically
the same, except that remember we count backwards in Lua - down is greater, up is
less!

What Now?

That is all for lesson 1 - your turn to play!

Why not try to align your text to the right? Have a look at the centering that was just
done and think about how that approach might be used for left and right alignment.

How about placing your text at the top of the page - or down the bottom?

Try some different colors - go wild!

In the next lesson, we learn how to make this text start to come alive, and how to use
a table to organize multiple lines of text nicely laid out on your page!

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 1

