

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 11

Scripting Tutorial - Lesson 11: Advanced: Introducing Classes

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

In lesson 9 and lesson 10 we created a workable
document for visualizing shape numbers. Like many of
the documents before this, the user controls the action
using arrow keys, enter, escape and tab keys. This sort of
keyboard control works very well when using the
handheld - it can mean that there is no need for students
to have to grab and drag anything - they just start using
arrow keys and the result is immediate.

We have already noted, however, that this approach is
useless if the document is intended for use with the
Player. We have retained TI-Nspire native sliders to
support such use, but this writing of variables back and
forth between Lua and Nspire is probably not the most
efficient way to work in terms of performance and ease of
use.

In fact, you
might have
noticed that
a pretty
important
UI
component
has been
missing in
our
introduction
to Lua to
this point -
how can we
use Lua to
control and
respond to
mouse
actions?
Clearly, this
is the
preferred
way of
operating
when using

a computer
(as opposed
to the
handheld).
Wouldn't it
be ideal if
documents
we
developed
were
actually
able to be
optimised
for all
platforms -
supporting
keyboard
control for
easy
handheld
access, and
also
working
with mouse
control for
use with
computers?
As
something
of a bonus,
if we no
longer need
Nspire
sliders, then
we probably
no longer
need to
transfer
variables
and can
work
entirely
within Lua,
which must
be a simpler
approach
for most
problems.

Click on the
screen shot
shown to
view a short
video of a
document
created in
this way.
Then try it
using the
TI-Nspire
Player by

Click to see what such a document might look like

Click to Play

clicking on
the red
button
beneath the
image.

In order to
realize this
goal, we
need to
move into
the next
level of Lua
scripting
and
introduce
the
important
and
powerful
tool of
classes.

Back to Top

Lesson 11.2: A Class of its Own

We will
begin with
something
a little less
ambitious.

Study the
video
opposite
and have a
play with
the
document
using the
Player.
You will
see that it
is simply
two
shapes
which can
be
grabbed
and
dragged
around
using the
mouse -
but these

shapes
can also
be
selected
using TAB
and
moved
using the
arrow
keys.

The
shapes,
circle and
square,
have been
defined as
classes.
For the
moment,
think of a
class as
more or
less a
"super-
function".
Just as we
have used
functions
previously
to define
all sorts of
useful
things,
that is
what we
will do
with our
square
and circle.
But the
power of
classes
lies in the
fact that
they bring
with them
some
useful
bonus
properties.
For
example,
an object
defined in
this way
knows
where it is
on the
screen, it
knows

Click to see a short video demonstration

Click to Play

whether it
has been
selected
or not,
and what
color it is
meant to
be, along
with
potentially
much
more. It
can tell if
it contains
another
object or
coordinate
position.
Can you
begin to
see how
this could
be useful?

Back to Top

Lesson 11.3: Class: init?

Begin by
defining the
empty class,
Square.

Next, the class
must be
initialized. The
various
properties that
this class is to
possess are
defined here.
Our class Square
has position (x
and y
coordinates),
dimensions
(width and
height), color
and the
knowledge of
whether it has
been selected or
not (this will
become clearer
soon.)

If we are to
control the
position of our

Square with a
mouse, then we
need to know
when we click
inside the
Square. This is
defined by the
"contains"
function. The
function
"contains" takes
as input an
ordered pair (x,
y) and returns a
Boolean value
true or false if
the ordered pair
falls within the
bounds of the
Square.

Finally, we need
to paint the
Square to the
screen.

In the usual way,
this will require
graphics context
commands (gc).
The first defines
the color for this
object, and an
interesting
approach is
used here. At
the beginning of
the script, color
is defined as a
table as follows:

Color = {

red =
{0xFF,
0x00,
0x00},

green
=
{0x00,
0xFF,
0x00},

}

Since the color
of Square has
already been
specified (in the
init function),

Square = class()

function Square:init(x, y, width, height)

self.x = x

self.y = y

self.width = width or 20

self.height = height or 20

self.color = Color.green

self.selected = false

end

function Square:contains(x, y)

local sw = self.width

local sh = self.height

return x >= self.x - sw/2 and x <=
self.x + sw/2 and

y >= self.y - sh/2 and y <=
self.y + sh/2

end

function Square:paint(gc)

gc:setColorRGB(unpack(self.color))

gc:fillRect(self.x - self.width / 2, self.y -
self.height / 2, self.width, self.height)

if self.selected then

gc:setPen("medium","smooth")

gc:setColorRGB(0, 0, 0)

the unpack
command
simply grabs the
RGB definition
for green from
the table, color.
(In more detail:
The "unpack"
function takes
as input a table
and returns each
table element as
multiple return
values.
"gc:setColorRGB"
expects three
parameters for
red, green, and
blue, but
Color.green is
one value, a
table of three
elements.
"unpack" turns
the elements of
the table into
the three
parameters
expected by
setColorRGB.)

Draw the square
in the usual way
- notice the
"self" references
used throughout
these
definitions. This
is a simple and
effective way for
a class object to
refer to its own
properties.

Finally, a little
routine that
draws a black
border around
the square IF it
is selected.
Neat.

Back to Top

gc:drawRect(self.x -
self.width / 2, self.y -
self.height / 2, self.width,
self.height)

end

end

So now how do
we see this
Square that we
have defined?

First, we need to
actually call the
function Square

along with some
parameters.
Remember that
the init routine
required x and y
coordinates,
width and height
(even though
these last will be
the same for a
square).

Then all that
remains is to
use the old
on.paint(gc)
function and to
call the paint
routine that we
have defined for
this class. We
now have our
square
displayed. NOTE
that it will, at
present, just sit
and look at you
- we have not
scripted any
instructions to
make things
happen just yet.

Next we will
learn how to
make things
happen with it.

Sq = Square(80, 80, 40, 40)

function on.paint(gc)

Sq:paint(gc)

end

This seems like a reasonable place to stop for this
tutorial. We have introduced this key idea of classes and
shown how we might create and display something in
this way. Before the next lesson you might try this out
and then define your own class to draw a red circle.

In our next lesson we will see how to control such an
object using mouse commands

Back to Top

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial -
Lesson 11

