TI-72spire

Home « _TI-Nspire Authoring « _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 12

Scripting Tutorial - Lesson 12: Advanced: Mouse Control

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

In lesson 11 we introduced the powerful promise of classes within Lua, making so much more
possible. Perhaps the most useful of these new possibilities is the control of screen objects using
the mouse in addition to the keyboard controls that we have already studied.

We begin with a little housekeeping. | always like to
define variables for my window width and height to
make it easy to refer to these later. You might have ) )
noticed that | am adopting a convention where global W = platform.window:width()
variables are Capitalized, while local variables are

lowercase. H = platform.window:height()

More importantly, | begin by introducing a new TrackedObject = nil

variable, called TrackedObject, which is initially nil,
but will make it easy for us to follow things,
especially when we are trying to track more than one
object. And we can define our size and starting
position a little more precisely.

Begin by defining the effect of mouse "clicks". Each
"click", of course, is actually two actions - a mouse
down and a mouse up. Both begin with a simple
check - if TrackedObject exists, then set its selected
state to off. This takes account of whatever state it
happens to be in when you click on it.

Sq = Square(W/2, H/2, W/10, W/10)

function on.mouseDown(x,y)
In the case of mouse down, then, the effect is to turn if Sq- )
the selected state to on, and to make our object the if Sg:contains(x, y) then
"TrackedObject" - as long as we click INSIDE the
object! Here is that lovely "contains" function hard at
work.

if TrackedObject ~= nil then

TrackedObject.selected

Finally, we refresh the screen with a = false

platform.window:invalidate() command. When using
mouse actions, this forces screen refreshes whenever
we use the mouse, so there is no need for other TrackedObject = Sq
methods (like the timer we have used previously).

end

Sqg.selected = true

platform.window:invalidate()

end
The other two mouse actions are very simple. Mouse

up simply releases the object. Turns selected off, and end
sets TrackedObject back to nil.

function on.mouseUp(x,y)
Finally, the marvellous mouseMove function. If

TrackedObject exists (which it does if we have our if TrackedObject ~= nil then
mouse down on our object) then the position )
variables for this object are set to be the same as TrackedObject.selected = false

those of the mouse. Easy!
end

TrackedObject = nil

platform.window:invalidate()
A nice finishing touch for this lesson might be to
display the coordinates of our TrackedObject as we end
move it around the screen. Just add the following
lines to on.paint:

function on.mouseMove(x,y)

if TrackedObiect ~= nil then



if TrackedObject ~= nil then

TrackedObject.x = x
gc:setFont("sansserif”, "b", 10)

TrackedObject.y =y
gc:setColorRGB(unpack(Sq.color))

platform.window:invalidate()
gc:drawString(

end
"("..TrackedObject.x..","
end

..TrackedObject.y..")",20,20)

end

In our next lesson we will review how to control such an object using keyboard commands.

Back to Top

Home « _TI-Nspire Authoring «_TI-Nspire Scripting HQ + Scripting Tutorial - Lesson 12




