

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 12

Scripting Tutorial - Lesson 12: Advanced: Mouse Control

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

In lesson 11 we introduced the powerful promise of classes within Lua, making so much more
possible. Perhaps the most useful of these new possibilities is the control of screen objects using
the mouse in addition to the keyboard controls that we have already studied.

We begin with a little housekeeping. I always like to
define variables for my window width and height to
make it easy to refer to these later. You might have
noticed that I am adopting a convention where global
variables are Capitalized, while local variables are
lowercase.

More importantly, I begin by introducing a new
variable, called TrackedObject, which is initially nil,
but will make it easy for us to follow things,
especially when we are trying to track more than one
object. And we can define our size and starting
position a little more precisely.

W = platform.window:width()

H = platform.window:height()

TrackedObject = nil

Sq = Square(W/2, H/2, W/10, W/10)

Begin by defining the effect of mouse "clicks". Each
"click", of course, is actually two actions - a mouse
down and a mouse up. Both begin with a simple
check - if TrackedObject exists, then set its selected
state to off. This takes account of whatever state it
happens to be in when you click on it.

In the case of mouse down, then, the effect is to turn
the selected state to on, and to make our object the
"TrackedObject" - as long as we click INSIDE the
object! Here is that lovely "contains" function hard at
work.

Finally, we refresh the screen with a
platform.window:invalidate() command. When using
mouse actions, this forces screen refreshes whenever
we use the mouse, so there is no need for other
methods (like the timer we have used previously).

The other two mouse actions are very simple. Mouse
up simply releases the object. Turns selected off, and
sets TrackedObject back to nil.

Finally, the marvellous mouseMove function. If
TrackedObject exists (which it does if we have our
mouse down on our object) then the position
variables for this object are set to be the same as
those of the mouse. Easy!

A nice finishing touch for this lesson might be to
display the coordinates of our TrackedObject as we
move it around the screen. Just add the following
lines to on.paint:

function on.mouseDown(x,y)

if Sq:contains(x, y) then

if TrackedObject ~= nil then

TrackedObject.selected
= false

end

TrackedObject = Sq

Sq.selected = true

platform.window:invalidate()

end

end

function on.mouseUp(x,y)

if TrackedObject ~= nil then

TrackedObject.selected = false

end

TrackedObject = nil

platform.window:invalidate()

end

function on.mouseMove(x,y)

if TrackedObject ~= nil then

if TrackedObject ~= nil then

gc:setFont("sansserif", "b", 10)

gc:setColorRGB(unpack(Sq.color))

gc:drawString(

"("..TrackedObject.x..","

..TrackedObject.y..")",20,20)

end

TrackedObject.x = x

TrackedObject.y = y

platform.window:invalidate()

end

end

In our next lesson we will review how to control such an object using keyboard commands.

Back to Top

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 12

