TI-72Spire

Home « TI-Nspire Authoring « _TI-Nspire Scripting HQ + Scripting Tutorial - Lesson 13

Scripting Tutorial - Lesson 13: (Advanced) Classes and Keyboard Control

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

In lesson 12 we saw that defining classes can make something like mouse control of screen
objects surprisingly easy. Well, it gets better. Classes tend to make just about everything

easier. Since a class object knows where it is on the screen (and, in fact, where other objects
are as well) then setting up different control mechanisms tends to be pretty straightforward.

As advertized, in this lesson you will learn how to add arrow keys and other keyboard
controls to move our Square around. First, however, a little more housekeeping.

In setting up our document so far, we have defined a
bunch of things, some functions, and some global
variables (like Color, W, H and even Sq).

Generally, if you need to rely that such global variables
exist so that you can call them as required, then you
should take steps to ensure this. Usually this means
placing them into a function that must get called at
some point, like on.create. Obviously this will always
get called at the very beginning (which is good) and
that is generally enough when using the handheld.

But we are setting these up to also work on the
computer, and in this context the page may get resized
at any point. If this happens, then we need to
recalculate our platform.window:width and height
values. If these are defined only when the page is
created, they will not be very effective.

A better solution, then, might be to use on.resize. this
will be called when the page is first created, AND will
get called again if the page dimensions change at any
point - perfect!

Now we can begin this lesson!

Have a look at the code opposite and pinch yourself if
it actually makes sense to you: who are you really, and
what have you done with the person who started these
tutorials not so long ago?

Hopefully, for some of you at least, what would have
been a jumble not so long ago now actually makes
some sense.

The only thing that looks different from the arrow
controls that we learned to use way back in tutorial 6
should be the use of this TrackedObject variable. But
once you realize that this is just a way to refer to the
currently selected thing (the Square in our case) then
you will see that the up and down, and left and right
arrows are doing much as we expect them to.

You might want to double-check the conditions
imposed here - you should see that these simply stop
you running off the visible screen. And, of course, the
leading condition for each function - if TrackedObject
is not nil.

This actually raises a very important issue that | have
stepped around so far. Copy and paste these lines of
code into the script from the previous lesson, adding

function on.resize()
Color ={
red = {OxFF, 0x00, 0x00},

green = {0x00, OxFF,
0x00},

}

W = platform.window:width()
H = platform.window:height()
TrackedObject = nil

Sq = Square(W/2, H/2, W/10, W/10)

end

function on.arrowRight()
if TrackedObject ~= nil then
if TrackedObject.x < W -
TrackedObject.width / 2
then
TrackedObject.x

TrackedObject.x
+5

end
end
end
function on.arrowLeft()
if TrackedObject ~= nil then
if TrackedObject.x >

TrackedObject.width / 2
then



keyboard commands to your mouse control. What
happens?

Well, nothing happens - yet. And the reason is because
using just our keyboard, we currently have no way to
select our object. With mouse control, we just click.
For such things, | like to use the TAB key. This makes
even more sense when we have multiple objects from
which to select. In such cases, then pressing tab should
jump from object to object - and we will see how to do
that shortly. First, study how we define our tabKey
actions.

function on.tabKey()

if TrackedObject ~= nil then

TrackedObject.selected
= false

end
Sq.selected = true
platform.window:invalidate()
end
So what about letting go?
Hopefully you will see that this is a simple but
important effect: pressing escape releases the currently
selected object. Once it is pressed, then the current
TrackedObject goes back to being nil.
function on.escapeKey()

if TrackedObject ~= nil then

TrackedObject.selected=
false

TrackedObject = nil
end

end

TrackedObject.x

TrackedObject.x
-5

end
end
end
function on.arrowDown()
if TrackedObject ~= nil then
if TrackedObject.y < H -
TrackedObject.height / 2
then
TrackedObject.y

TrackedObject.y
+5

end
end
end
function on.arrowUp()
if TrackedObject ~= nil then
if TrackedObject.y >
TrackedObject.height / 2
then
TrackedObject.y

TrackedObject.y
-5

end
end

end

I hope you don't mind that we are taking baby steps with these tutorials: concentrating on
one thing at a time rather than trying to do multiple things. If the pace is painfully slow, | am
sorry, but it made sense to me to be extra careful. And you are free to whip through these as

fast as you like.

I would strongly suggest that at the end of each tutorial, you play. You use the ideas
demonstrated to try and do something of your own. For example, what would be really nice
to try at this stage might be to transfer these ideas to a similar context: how about you try
doing this with an image instead of a drawn graphic object? All should work the same - just
using the image definition commands you learned back in Tutorials 6 and 7.

In our next lesson we will see how to apply what we have learned so far to multiple objects.

Back to Top

Home « TI-Nspire Authoring < _TI-Nspire Scripting HQ + Scripting Tutorial - Lesson 13







