
           

           

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 14

           

Scripting Tutorial - Lesson 14: (Advanced) Using Keyboard Controls
with Multiple Classes

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

And now the fun begins!

By lesson 13 we had learned how to define a class and to control
movement of such objects using both keyboard and mouse controls.
Not much fun with just a single class. So now it is time to work with
multiple class objects.

First we need another class to work with. This is a good excuse for a
little review and revision of where we have been recently.

You will see below the code to create a Circle class to complement our
existing Square. It should be sensible and even familiar, if you took my
advice and tried to create this yourself at the end of Lesson 11.

Things to study closely: look at the way that the contains function is
defined here: quite different from that of the Square, but perfectly
sensible for a circle. In fact, this is a fair bit simpler than that for the
Square.

As with the
Square, I have
defined a
generic Circle
- one which
could just as
easily be an
ellipse, just as
the Square
could easily be
turned into a
Rectangle, if
desired. Makes
life easier later
on if you need
to vary from
the original
simple plan.
This is a good
rule of thumb
for any
programming
(or, indeed,
document
creation) that
you do: try to
avoid creating
specific
instances
when, with just



a little more
time and
effort, you
could create a
general case.
For a quiz
document, for
example, avoid
entering
specific
questions if,
with a little use
of a random
function, you
can have the
software
generate
multiple
questions.
Much more
powerful and
useful as a
learning tool.

Finally, review
the syntax for
the drawArc
and fillArc
commands
that are used
here. Note that
this is, in fact,
a much more
general
command than
just a "circle
creator". The
circle is just a
specific
instance that
occurs when
the arc
extends from 0
to 360 degrees
(or perhaps
from -180 to
180? Think
about this!).

We now arrive
at the heart of
this lesson: a
simple way to
work with
multiple
objects is to
create a table
which contains
them! Then to
move from
object to
object, we just
step through
the table. I
hope, like me,
that you can
appreciate the
elegance of
this approach.

Circle = class()

function Circle:init(x, y, width, height)

self.x = x

self.y = y

self.width = width * 2

self.height = height * 2

self.radius = height

self.color = Color.red

self.selected = false

end

function Circle:contains(x, y)

local r = self.radius

local d = math.sqrt((self.x - x)^2 + (self.y - y)^2)

return d <= r

end

function Circle:paint(gc)

local cx = self.x - self.radius

local cy = self.y - self.radius

local diameter = 2*self.radius

gc:setColorRGB(unpack(self.color))

gc:fillArc(cx, cy, diameter, diameter, 0, 360)

if self.selected then

gc:setPen("medium","smooth")

gc:setColorRGB(0, 0, 0)

gc:drawArc(cx, cy, diameter, diameter, 0,
360)

end

end

  

  

Objects = {

Circle(W/2, H/2, W/20, W/20),

Square(W/2, H/2, W/10, W/10),

}



In this case, we
create a table
called Objects
which consists,
at present, of a
Square and a
Circle. It might
be about now
that the
importance of
the variable
TrackedObject
might become
apparent.
Whatever is the
currently
selected
member of the
Objects group
becomes the
TrackedObject.
We just need a
mechanism to
move from one
object to the
next - and that
will be our
tabKey for the
keyboard, or
mouseDown
for the mouse
controls.

  

  

This Objects
table should
be defined up
in the
on.resize
function. You
will notice that
I actually use it
to define my
Square and my
Circle, doing
away with the
intermediate
variable "Sq"
that I used
previously.
This will mean
a little rewrite
of some of our
previous code,
but will be
worth it.

The best way
to see how this
process will
work is by
redefining our
tabKey
function to
take advantage
of it, as shown



here. You will
see the new
code in bold.
The rest of the
code, using
TrackedObject,
remains just
fine.

Perhaps the
syntax looks a
little strange,
but still we are
looking at a
simple for loop
which steps
through the
objects in the
Objects table.

What is that -1
in the first line
of the loop?
The loop
commences
with the
number of
objects in the
Objects table
(#Objects) and
then steps
backwards (-1)
to the first
object. Nice.

The effect of
pressing TAB
here is to
move focus
from one
object in the
table to the
next object.
The break
serves to stop
that continuing
indefinitely - it
moves forward
once, and then
stops until the
next press of
the tabKey.

We can then
update our
on.paint
function to use
the Objects
table rather
than the
specific global
variable Sq, as
previously. You
will see that
this for loop
uses the
dummy
variable "_" to
count through

  

  

function on.tabKey()

if TrackedObject ~= nil then

TrackedObject.selected = false

end

for i = #Objects, 1, -1 do

local obj = Objects[i]

if obj == TrackedObject then

TrackedObject = Objects[i+1]

break

end

end

if TrackedObject == nil then

TrackedObject = Objects[1]

end

TrackedObject.selected = true

platform.window:invalidate()

end

  

  

function on.paint(gc)

for _, obj in ipairs(Objects) do

obj:paint(gc)

end

if TrackedObject ~= nil then

gc:setFont("sansserif", "b", 10)

gc:setColorRGB(unpack(TrackedObject.color))

gc:drawString("("..TrackedObject.x..","
..TrackedObject.y..")",20,20)

end

end



the Objects
table in
"ipairs", which
means
counting an
index as well
as each object
(obj[1], obj[2],
etc). Finally, we
replace the Sq
reference in
the last
drawString
commands so
that the
coordinate
position
displayed is
that for the
TrackedObject,
and it will be
displayed in
that object's
color. Pretty
cool.
  

  

These changes should now make it possible to use keyboard controls
to tab from object to object, and to move the selected object around.
What remains is to update the mouseDown function in a similar way
to the tabKey so that our mouse controls will also work with multiple
classes.

In our final lesson for this sequence we will see how this is done, and
finish this introduction to classes and to mutliple controls.

Back to Top

     

  

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 14


