TI-72spire

Home < TI-Nspire Authoring « _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 15

Scripting Tutorial - Lesson 15: (Advanced) Using Mouse Controls with
Multiple Classes

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

In lesson 14 we saw how to use Keyboard controls to select and work
with multiple class objects. In this final lesson, we extend our mouse
controls in the same way. Most of what we need has already been put
in place using the TrackedObject variable. All that is really needed is
to generalize the mouseDown function to work with out Objects
table rather than the specific case of the Square previously defined.

We need to
study the
various parts of
the
mouseDown
function closely
in order to
understand
what is
happening
here.

The function
begins just as
tabKey did,
with a loop
through the
objects in the
Objects table,
allocating a
local variable
obj to each in
turn. As we
might expect
from previous
mouse work, if
the mouse
down occurs
within a
particular
object (using
the contains
function) then
that becomes
our selected
object to be

Tracked.)
function on.mouseDown(x,y)

As before, first _ _
release it if the for i = #0bjects, 1, -1 do

object was local obj = Objects]i]

already
selected so we
know what
state we are in.
Then we define
TrackedObject
as obj, and
indicate that it
is selected.

The next two
lines define two
new global
variables called
TrackOffsetx
and
TrackOffsety.
You may have
noticed that if
we click on an
object
somewhere
other than the
center, the
object is
inclined to
jump to place
the center
under the
mouse. These
TrackedOffset
values serve to
avoid this little
jump. They
should initially
be defined as
Zero in our
on.resize
function so
that they exist
when the page
is created and
changed.

Back to
tracking
multiple
objects. The
table.remove
and table.insert
commands
serve to release
any previous
selected object
and replace
with the
current one -
essentially
moving it to
prime position
in the table.
This has the
effect desired -
the object
being clicked
on becomes
the selected
(Tracked)

if obj:contains(x, y) then
if TrackedObject ~= nil then

TrackedObject.selected
= false

end
TrackedObject = obj
obj.selected = true

TrackOffsetx = TrackedObject.x
- X

TrackOffsety = TrackedObject.y -
y

table.remove(Objects, i)
table.insert(Objects, obj)
platform.window:invalidate()
break
end
end
end
function on.mouseUp(x,y)
if TrackedObject ~= nil then
TrackedObject.selected = false
end
TrackedObject = nil
end
function on.mouseMove(x,y)
if TrackedObject ~= nil then
TrackedObject.x = x + TrackOffsetx
TrackedObject.y = y + TrackOffsety
platform.window:invalidate()
end

end

object and all is
well.

Only one other
change is made
to mouseMove
and that is
simply to
include the
TrackOffset
values referred
to previously.

Copy this code
into
script_tutl4.lua
and you now
have completed
your mission.
Two objects
may now be
selected and
controlled by
either mouse
or keyboard!

| would suggest
that you now
extend this
script to
include other
objects. Simply
define these
and then insert
their definition
into the Objects
table and you
will be able to
control them
just as easily as
you control the
square and the
circle. Multiple
images will
work just as
well.

Time then,
perhaps, to go
back to the
Shape Patterns
document
featured in
lesson 11 and
think about
how you may
now create your
own rich and
powerful
documents
which work
equally well
with both
handheld and
computer.

Click to see what such a document might look like

m 1.1 11.2 m Il > *Shape_Patterns < {‘W‘l
Triangular Numbers: (7 x 8)/2 = 28

‘ ... Choose
4 Build » Type

14243

Launch Player

Congratulations
on completing
this series of
lessons!

Back to Top

Home < TI-Nspire Authoring < _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 15

