

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 17

Scripting Tutorial - Lesson 17: Tips and Tricks I

Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-Nspire Scripting Support Page

math.eval

I have been having a lot of fun (and more than a little bit
of frustration at times!) learning how to use this
wonderful, powerful command.

After all, we are not like the rest of the Lua scripters out
there, working on a blank canvass in a vacuum. We are
working within a really powerful and full-featured
mathematical environment - TI-Nspire. So while
routines for things like finding the greatest common
denominator (gcd) of two numbers are available out
there on the Internet, should we not be able to reach
across and use the GCD function that lives within TI-
Nspire? This is where math.eval comes in.

Suppose we have two numbers, call them num and den
and we wish to know if they have any common factors. If
so we would like to divide these out and present the
simplest form for the fraction num.."/"..den. For that we
need the GCD of num and den.

NOTE that I am trying to show the Nspire stuff in red to
try and expose what is going on here.

The simplest option would probably be to store num
and den across to Nspire:

var.store("num", num)

var.store("den", den)

http://compasstech.com.au/TNSINTRO/TI-NspireCD/Start_Here.html
http://compasstech.com.au/TNS_Authoring/index.html
http://compasstech.com.au/TNS_Authoring/Scripting/index.html
http://compasstech.com.au/TNS_Authoring/Scripting/script_tut17.zip
http://compasstech.com.au/TNS_Authoring/Scripting/ScriptingPDF/ScriptLesson17.pdf
http://education.ti.com/nspire/scripting

(No real problem with using the same name for the
variables in both nspire and Lua since they will never
actually, you know... meet.) Then...

local gcd = math.eval("gcd(num,den)")

Study this carefully to see what is happening here. So
the argument of the math.eval function (in quotes) is
what gets sent to Nspire, which understands that
command and sends the answer back to Lua. Neat, eh?

A better option would probably be

local gcd = math.eval("gcd("..num..","..den..")")

since this does not involve sending any variables across
the Lua/Nspire barrier. Again study and see how this is
working.

Now stop and think about this and maybe see how
potentially powerful this feature is. We can get TI-Nspire
to compute any legitimate command that it
understands.

Originally, I thought that this was limited to native TI-
Nspire functions, but actually it works for user-defined
functions as well. AND it works for CAS - with an
important proviso: Lua can only deal with variable types
that it recognises: numbers and strings, but NOT lists,
expressions or matrices.

So suppose we wish to grab the result of a PolyRoots
function applied to some function that we have defined:
call it fn. For our purposes here, suppose fn = "x^2-5".
Then we could say

result = math.eval("polyroots("..fn..",x)")

Unfortunately, this would not work... but why not?

The result of polyroots is a list. We need to turn it into a
string so that Lua can receive it. So a more successful
approach would be

result = math.eval("string(polyroots("..fn..",x))")

Similarly if we were using CAS and we wanted to factor
an expression - the result would be an algebraic
expression and Lua cannot handle that. So we make
sure that what is sent back to Lua is a string:

result = math.eval("string(Factor("..fn..",x))")

Finally, if we sent our function across to Nspire, it goes
across as a string. So we would need to "unstring" it so
that factor can work with it, then turn it back into a

that factor can work with it, then turn it back into a
string to send it back. Sorry, but this does make sense
when you stick with it for a while. So an alternative
approach would be...

var.store("fn", fn)

result = math.eval("string(Factor(expr(fn),x))")

I prefer the more elegant approach, avoiding sending
variables across the divide if possible unless we really
need them over there for something else. For example,
suppose we also wanted to view the graph of our
function fn? Then by storing it across in nspire, we
could define f1(x) = expr(fn) and you will get the graph
of whatever fn happens to be!

All of these various
routines and ideas
have been used to
create the attached
document, pretty.tns.
In addition to the
Pretty Print routine for
algebraic expressions,
the script includes a
fraction display
function, and
math.eval routines
that find roots for
polynomials and
evaluate numeric
forms.

In the other more
complete attached
document,
fractions_template.tns
(shown here), there is
even a keypad added.

Click anywhere on this image for a video
demonstration

Back to Top

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial -
Lesson 17

http://compasstech.com.au/TNS_Authoring/Scripting/fracs/fracs.mov
http://compasstech.com.au/TNS_Authoring/Scripting/script_tut17.html#top
http://compasstech.com.au/TNSINTRO/TI-NspireCD/Start_Here.html
http://compasstech.com.au/TNS_Authoring/index.html
http://compasstech.com.au/TNS_Authoring/Scripting/index.html

