

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 19

Scripting Tutorial - Lesson 19: Guidelines for Lua Nspired
Authoring I

Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-Nspire Scripting Support Page

WORKING ACROSS PLATFORMS (Create Once Play
Everywhere)

So now you plan to create your own documents using Lua and TI-
Nspire?

Whether professionally or for your own students, it is important
that the documents you create offer the optimal experience for the
user. In the end, the primary intent is to create an effective
learning experience, and this will not happen if design and
usability issues get between the user and the lesson content.

The guidelines described in this and the following tutorial are
proposed as useful considerations which should serve to ensure
that your documents will work well, wherever they are used.

The two critical variables described here concern the way that
documents present across the various TI-Nspire platforms (design
and display considerations - Lesson 19) and usability issues
(Lesson 20) - ensuring that the document will be as easy and
effective to use on the handheld as it is in the Player or in the
desktop software - or anywhere else!

1. Display Considerations: Looking Good Everywhere!

The primary consideration when creating Lua Nspire documents is
to ensure that, whether viewing in handheld or computer mode,
whether on Player, PublishView or other platforms, that the
document scales correctly and that the user experience is
effective. A key advantage in the use of Lua documents over those
created using native TI-Nspire functionality lies in the potential
guarantee that, correctly scripted, such documents will read and
present effectively in all possible views. In spite of substantial
efforts in this respect, native Nspire apps (especially Graphs &
Geometry) remain difficult to control in this respect.

file:///Users/steve/Documents/WebPage/TNS_Authoring/TNSINTRO/TI-NspireCD/Start_Here.html
file:///Users/steve/Documents/WebPage/TNS_Authoring/index.html
file:///Users/steve/Documents/WebPage/TNS_Authoring/Scripting/index.html
file:///Users/steve/Documents/WebPage/TNS_Authoring/Scripting/script_tut19.zip
file:///Users/steve/Documents/WebPage/TNS_Authoring/Scripting/ScriptingPDF/ScriptLesson19.pdf
http://education.ti.com/nspire/scripting
file:///Users/steve/Documents/WebPage/TNS_Authoring/Scripting/script_tut20.html

The Math Nspired document for Arcs and Sectors offers a nice
illustration of this point. The first two images show a page from
the original file: first in handheld view (nice!) and then in computer
view (yuk!). This is followed by a Lua conversion of this page,
again in handheld and then computer view. The other advantage
of the Lua document is that the point moving around the
circumference of the circle can be controlled simply by pressing
the arrow keys - no need to arrow around the screen, trying to
grab and move points on the handheld, but equally effective using
the mouse in computer view. This will be the focus of further
discussion in Lesson 20.

file:///Users/steve/Documents/WebPage/TNS_Authoring/Scripting/script_tut20.html

There is one fundamental golden rule: All size and position
references must be relative to the screen size. NEVER use absolute
values for position or size, even initially, since these will most
likely work fine in one view and badly in others.

1.1 Relative NOT Absolute

This is most easily achieved by defining variables for width
and height, such as

W = platform.window:width()

H = platform.window:height()

Position variables then should be expressed in terms of
these. For example, the initial position of an object could be
W/2, H/2 to center on the page. Similarly for sizes (see 1.3
and 1.4 below)

1.2 function on.resize()

It is most effective if these global variables are defined within
an on.resize function so that they are called whenever the
page dimensions are changed. This routine is also called
when the page is created, and so is suitable as a place to
define initial values of variables and objects.

The resize function can be easily called in, for example, on
escapeKey() or as the result of mouseDown within a button.

1.3 Relative Object Sizes

Defining the dimensions of symmetrical objects such as
circles and squares is best achieved by choosing either W
(platform.window:width) or H (platform.window:height) and
sticking to this value. So, for example, the initial width and
height of a circle or square could both be a relative value like
W/30.

1.4 Relative Font Size

The font size can be linked to a value such as the page width
in order to ensure that larger screens will display larger text.
Taking the standard width of the handheld window as 318
pixels, then we might define a variable

pixels, then we might define a variable

fontSize = W/32

and this will result in a font size close to 10 on the handheld.
The value will be automatically rounded to a whole number
for use in the setFont command, but the use of the
math.floor function will ensure that an integer value results.
There is a minimum value of 6 for font size (and a maximum
of 255). In order to guard against the former, then a better
definition might be

fontSize = math.floor(W/32)

fontSize = fontSize >= 6 and fontSize or 6

fontSize = fontSize <= 255 and fontSize or 255

NOTE: Thanks to Andy Kemp for pointing out that, while the
computer can handle font sizes between 6 and 255 point, the
handheld is restricted to 7, 9, 10, 11, 12 and 24. Using the
limits above will not cause any problems on the handheld (it
will read 6 as 7, and anything above 24 will get capped) BUT
it does mean that there will be times when the page will
appear differently on the handheld than it will on other
platforms.

If you wish to try and ensure consistency as much as
possible, then the following would be the safer (but more
limited) option:

fontSize = math.floor(W/32)

fontSize = fontSize >= 7 and fontSize or 7

fontSize = fontSize <= 24 and fontSize or 24

1.5 Intended Page Size - Another Approach

With thanks to Alfredo Rodriguez

The methods described above are probably the simplest way
to ensure that your document will scale well for different
page sizes and different platforms. However, another
approach does offer some advantage. It consists of defining
an "intended page size" initially, and then scaling to that size.

Begin by defining your intended page size. One obvious
choice would be the size of the handheld window so that
documents so created will certainly work in this limited
space, but then will scale up from there.

local iW = 318

local iH = 212

Initially, too, define a scale factor:

local sf = 1

An interesting variation on the standard Paint function is
shown next. Study it carefully and see if you can understand

shown next. Study it carefully and see if you can understand
the intent.

function on.paint(gc)

-- Enable handlers

on.paint = onPaint

on.resize = onResize

-- Call initial onResize

onResize(platform.window:width(),
platform.window:height())

-- Call initial onPaint

onPaint(gc)

end

In addition to whatever other initial variables or objects that
need to be defined up front, a critical inclusion in this Resize
function is the definition of the Scale Factor in terms of the
platform window dimensions. I would probably include the
font definition at this point as well. Then a simple scaling
function applies this throughout the script.

function onResize(w, h)

sf = w/iW

fontSize = 10*sf

fontSize = fontSize >= 6 and fontSize or 6

fontSize = fontSize <= 255 and fontSize or 255

end

function s(a)

return math.floor(a*sf)

end

The Paint function then will make use of these to display the
appropriately scaled objects. The first image shows the
handheld view; the second computer view. Even the font
scales nicely.

function onPaint(gc)

local x = s(iW/4)

local y = s(iH/4)

local w = s(iW/2)

local h = s(iH/2)

-- Draw background

gc:setColorRGB(200,
200, 250)

gc:fillRect(x, y, w, h)

-- Draw lines

gc:setColorRGB(150,
150, 250)

gc:drawRect(x,y, w, h)

gc:drawLine(x,y, x+w,
y+h)

gc:drawLine(x,y+h, x+w,
y)

-- Draw Messages

gc:setColorRGB(150, 30, 30)

gc:setFont("sansserif", "b", fontSize)

local str = "We put technology in your hands"

local sw = gc:getStringWidth(str)

gc:drawString(str, s(iW/2)- sw/2, s(iH*0.9),
"bottom")

end

Observe that all positions and object dimensions are run
through the Scaling function and expressed in terms of the
intended window size.

Although clearly a little more involved in setting up than the
previous method, this approach offers one clear advantage:
suppose we wish to rescale the entire window as a variable
changes? A simple matter of adjusting the single Scale factor
variable, and all else follows, whereas the previous approach
would require numerous changes to accomplish this same
end.

In Lesson 20, we continue this discussion of useful guidelines and
principles, considering usability considerations which help to
optimize the user experience, particularly when using the
handheld, but applicable to other platforms as well.

Back to Top

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial -
Lesson 19

file:///Users/steve/Documents/WebPage/TNS_Authoring/Scripting/script_tut20.html
file:///Users/steve/Documents/WebPage/TNS_Authoring/Scripting/script_tut19.html#top
file:///Users/steve/Documents/WebPage/TNSINTRO/TI-NspireCD/Start_Here.html
file:///Users/steve/Documents/WebPage/TNS_Authoring/index.html
file:///Users/steve/Documents/WebPage/TNS_Authoring/Scripting/index.html

