
           

           

Home ← TI-‐‑Nspire Authoring ← TI-‐‑Nspire Scripting HQ ← Scripting Tutorial -‐‑ Lesson 21

           

Scripting Tutorial -‐‑ Lesson 21: (3.2) Text Boxes and Rich Text
Input
Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-‐‑Nspire Scripting Support Page

       

  

Text Boxes and Rich Text Input (3.2)
With the release of TI-‐‑Nspire
Operating System 3.2 comes a
selection of very powerful and highly
useful tools. Most importantly, we
now have an in-‐‑built Lua script editor
-‐‑ look at the bottom of the Insert
menu. This finally makes Lua scripting
accessible to everyone with an interest
to pursue it. Use the Insert menu to
Insert a script into an Nspire window,
and also to edit an existing script. The Script Editor is available on every TI-‐‑
Nspire software platform except the handheld -‐‑ so students will be unable to
access scripts on their handhelds. But they sure can on their Student software
at home! You will experience this editor in action as we learn about some of
the great 3.2 features now available.

With the first of these (a functional 2D Editor) we return to the basics of Lua
scripting: the first few lessons seem so very long ago, and so you might
struggle to recall much about them. The main theme in the first five lessons
was text. Putting it onto a page, controlling how and where it appeared, and
learning how to accept keyboard input so that students could type responses
into your documents. Remember?

While our Lua environment has actually always possessed a RichText 2D
Editor, until 3.2, it was really not very functional. It has now come into its
own, and presents us with a perfect way for users to enter, not just text, but
mathematical and chemical notation, as well as a few geometry symbols!

Instead of painting everything onto the screen using the on.paint function



(and being responsible for every detail of appearance and layout -‐‑ which

made things like fractions challenging!) we can now create a text box

anywhere on the page which functions just like a text box should: it lets you

type in and edit text, and change size and other features. In fact, just like a

Notes page, you can create a Math Box (or a Chem Box) and have it sort out

layout and formatting for you.

Most importantly, we can grab whatever text is entered and do things with it.

Those things include deciding if the response is the correct answer to your

question, or turning the input into a mathematical output, or even searching

the text and changing parts of it as desired.

  

  

1. Setting Up Your TextBox
Top of Page

No easy way around this, so I

am just going to spill the code

onto the page and work from

there. One thing you will

notice which seems quite

strange at this point is that we

can actually get stuff onto our

page -‐‑ and functional -‐‑

without any sign of an

"on.paint" function! Amazing!

At the top of our script -‐‑ and

of all our scripts from now on!

-‐‑ is the APIlevel. If the script

uses OS 3.2 functionality (like

on.construction) then it is

defined as platform.apilevel =

"2.0". Previous scripts were

level "1.0". Documents which

include such new functionality

will not open in versions prior

to 3.2. Note this well: if your

script is level 2.0 then

students with an earlier OS will

not even be able to open the

document!

Next we have "on.construction"

and the old "on.resize"

function. The former is new to

3.2 and replaces "on.create"

which we never used much

because it tended to be a little

unreliable about when it was

actually called. No such

problems with on.construction.

It is the first thing that

platform.apilevel = "2.0"

function on.construction()

timer.start(0.4)

TextBox1 = D2Editor.newRichText()

end



happens. Period. So don't go

putting any page size

references in there, because

there really is not a page to

measure at this point! But we

can set up the stuff that only

needs doing once. In this case,

that is just to create a new rich

text box (which I am calling

"TextBox1") and to start the

timer, which will be used to

continually refresh the screen.

The usual on.resize function

then takes care of laying out

the page stuff -‐‑ and managing

things if and when we change

the size of that page. As

always, even if we don't resize

the page, this gets called once,

before anything is painted to

the screen. So this is a good

place to put those things that

need to get refreshed if the

page changes.

I have also discovered a new

favourite -‐‑ "on.getFocus". This

does pretty much what it

claims -‐‑ so when you return to

this page, it will do whatever

we ask of it -‐‑ in this case, to

put the focus back into the

text box so that the user can

begin typing straight away.

So...

Copy the code at right, create

a new document, insert a

script page, paste and then Set

Script (or just ctrl-‐‑S as if you

were "saving") to see what is

happening here. You should

get a page with an active text

box in the lower half. Type

something in, then insert a

new Notes page. In a MathBox,

type "input" and press enter -‐‑

you should see your text!

In other words, we have

created a live text box which

knows what it being typed into

it! And all without an on.paint

function!

function on.resize()

W = platform.window:width()

H = platform.window:height()

TextBox1:move(W*0.05, H*0.5)

TextBox1:resize(W*0.9,H*0.4)

fontSize = math.floor(W/32)

fontSize = fontSize > 6 and fontSize

or 7

TextBox1:setFontSize(fontSize)

TextBox1:setBorderColor(500)

TextBox1:setBorder(1)

TextBox1:setTextColor(200*200*200)

TextBox1:setFocus(true)

end

function on.getFocus()

TextBox1:setFocus()

end

function on.timer()

cursor.show()

Input = TextBox1:getExpression()

if Input then

var.store("input", Input)

end

platform.window:invalidate()

end

function on.escapeKey()

TextBox1:setExpression(" ")

platform.window:invalidate()

end



The various commands are

fairly self-‐‑explanatory -‐‑ at

least if you have worked

through the previous 20

lessons! The text box is

created by the

D2Editor.newRichText()

command, it is positioned

using TextBox1:move(W*0.05,

H*0.5) and it is sized by

TextBox1:resize(W*0.9,H*0.4).

Play around with the various

commands and values to see

their effects. You will see that

the real magic is happening

here in the on.timer function

where whatever is typed into

the box is grabbed and

assigned a variable name. This

is the powerful part. I have

added an escapeKey function

which clears the text box -‐‑

study it and see how it does

that. This is a very important

command!

  

  

2. Playing with Text

Top of Page

And now for some fun!

A challenge to begin with. Create a

second text box and arrange the two

boxes on the page so that one lies

above the other, as shown. If you have

problems, refer to the file

script_tut21.tns in the Downloads for

this page.

Now I would like, initially, whatever I

type into the top box to appear in the

bottom one.

Study the code -‐‑ especially the

on.timer function. Can you see that all

we need to do is to add the line

TextBox2:setExpression(Input) after

we have made sure that Input actually

exists? (NOTE that the terms getText

and getExpression, and setText and

setExpression are considered to be

interchangeable)

  



So now replace this line with:
TextBox2:setExpression("\\1keyword
"..Input) and see what happens. The
command "\\1keyword " is one of a
few interesting commands available to
play with here -‐‑ as you see, the effect
is to take the next word and to make it
bold.

A word of caution when using these
text style commands: there is no
guarantee that they will not change in
future OS updates! So perhaps avoid
using them in anything critical since it
may not work as expected in the
future.

The credit for uncovering these
wonderful undocumented commands
goes to the team at Inspired-‐‑Lua.
Many thanks to Jeremy and Adrien
for all their efforts to help those of
us learning to make the best use of
Lua on the TI-‐‑Nspire!

  

  

The list of these formatting
commands includes styles such as
bold (keyword) and italic (subhead)
as well as some nice Geometry
symbols, as available in the Notes
application.

Such commands could be used in a
variety of ways. For example, you
could search for occurrences of the
word "circle" and replace them
automatically with the symbol!

In the example I have created, I have
borrowed from HTML scripting, so
that such special commands are
defined in a particular way (in this
case, followed by a colon). When
found they carry out their defined
function, either inserting a symbol
(circle, triangle) or setting up the
special notation for ray, or line, or
enhancing the next word. Copy and
paste the function into your page,
and then simply make one change to
the line you previously entered in the
timer function:
TextBox2:setText(pretty(Input)).
Then try out your new talents by
copying and pasting the following

function pretty(input)

input =
input:gsub("circle:",
"\\1circle ")

input =
input:gsub("triangle:",
"\\1tri ")

input =
input:gsub("angle:",
"\\1angle ")

input =
input:gsub("ray:",
"\\1ray ")

input =
input:gsub("line:",
'\\1line ')

input =
input:gsub("segment:",
"\\1lineseg ")

input =
input:gsub("rtri:",
"\\1rtri ")

input =
input:gsub("vector:",
"\\1vector ")



text into TextBox 1:

u:Underline can be mixed with
b:bold, i:italic, and sup:superscript
with sub:subscript . b:Geometry
symbols include triangle:ABC,
circle:P, rtri:ABC, line line:AB,
segment segment:AB and ray
ray:AB and vector vector:ABC .

You will notice, if you are on the
handheld, that you may need to
adjust the font size to see all of the
text you paste into TextBox 1. This is
easily done in OS 3.2. But it is not
possible to scroll or to adjust font
size in the second box, since it is not
a "live" box in the same way that box
1 is. It is dependent upon whatever is
typed above, and so care must be
taken when setting the page up as to
the size of the font for optimal
viewing.

input =
input:gsub("u:",
"\\1title ")

input =
input:gsub("b:",
"\\1keyword ")

input =
input:gsub("sup:",
"\\1supersc ")

input =
input:gsub("sub:",
"\\1subscrp ")

input =
input:gsub("i:",
"\\1subhead ")

 

return input

end

  

       

Think about the applications here. Using such a method, an assessment task
could easily be created in which key words are searched for and, if identified,
may earn credit. In fact, the box could be set up so that when certain key
words are typed, they instantly become highlighted in bold or italic style,
drawing the learner's eye and attention.

In our next lesson we continue to explore the possibilities for these rich text
boxes, and learn how to create our own dynamic math and chem boxes.

  

  

Back to Top

  

Home ← TI-‐‑Nspire Authoring ← TI-‐‑Nspire Scripting HQ ← Scripting Tutorial -‐‑ Lesson 21


