TI-72spire

Home « TI-Nspire Authoring + _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 22

Scripting Tutorial - Lesson 22: (3.2) Create Your Own Math Boxes

Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-Nspire Scripting Support Page

Create Your Own Math Boxes (3.2)

The 2D Editor certainly supports some exciting text-based
opportunities, but for me, where it shines lies in the potential to
make input and display of mathematical (and chemical) notation

platform.apilevel = "2.0"
easy.

function on.construction()

timer.start(0.4)

) TextBox1 = D2Editor.newRichText()
1. Setting Up Your MathBox or ChemBox

end
Top of Page
Begin with exactly the same script as in the last lesson - which function on.resize()
cregtes an aCt'\{f text"box and stores any input to a TI-Nspire W = platform.window:width()
variable called "input".
H = platform.window:height()
This time, however, add a single command:)
TextBox1l:createMathBox() or TextBox1l:createChemBox(). The TextBox1:move(W*0.05, H*0.5)
magic Is done! TextBox1:resize(W*0.9,H*0.4)
Waiting for your input is a fresh math or chem box with cursor TextBox1:createMathBox()
flashing, ready to go!)
fontSize = math.floor(W/32)
8 00 test - TI-Nspire™ CAS Teacher Software Script Editor
Bizis ___ = B S = a fontSize = fontSize > 6 and fontSize
- 28 =)] Thmer - @ 83 -| FE - = 7
; o - 'A'}“’Nsmim iz <A A|B I U F G ‘smw s:r\w‘ Breakpoints Image _ Permissions — or
B TextBox1:setFontSize(fontSize)
a 1.1 i3 *test < 1 g
85003 TextBox1:setBorderColor(500)
—_— TextBox1:setBorder(1)
TextBox1:setTextColor(200%*200*200)
polyroots(.\‘2 —4xt+3 ,,\‘] i
TextBox1:setFocus(true)
end
input * \Oel {polyroots(x"(2)—4x+3,x)} ression(taput) l.
[N Gobals | cCalsuck_|_tocs v function on.getFocus()
“rest x| Lua_TextBoxe: “scriptwl x| avE
e CoEE EmT o TextBox1:setFocus()
end

function on.timer()
cursor.show()
Input = TextBox1:getExpression()
if Input then

var.store("input”, Input)

test - Ti-Nspire™ CAS Teacher Software

Documents

end

platform.window:invalidate()

TextBox1:setExpression(" ")

platform.window:invalidate()

S = &
A
end
function on.escapeKey()
2NaOH + HaS0s —» Na:SOs + 2H:0
3 ' end
input i
* \chem {2NaOH + H:50s — Na:SOs + 2H:00 [8 I
- m
“test x| lua TextBoxes X scriptwel x| arm
11 sewngs Document view:[]] 8 | zoom: [200% | - + BL1 2621 Rumning 8 nsert
The chem box is basically just a presentation tool (which is

great, of course) but the MathBox is live and fully function

al.

YBE i3, Vaki and, press enter and it evaluates - just like
2 ﬂ%Y?nag ich TR J
in Notes.

Top of Page

Look carefully at the output of each: the
result is wrapped in a simple layer of code.
For the MathBox, this is "\\0el {" and my
input and "}" while the ChemBox output is
even simpler - "\\chem {" my input "}".

Documents

Hold on - can't see that extra "\" in the

| B iser - @) 03| 2 -
- A -[tinspire

test - TI-Nspire™ CAS Teacher Software.

o A

set Fowus
script_ script

A~ A~ B I U 04

screen shots above? It is a reserved character
in Lua and so to have it recognised, you need :
to add an extra one!! (Lucky | told you that,

Enable
Breakpoints

isn't it?) (;é

So now for our challenge: once again, as
shown, create two text boxes as you did in

the last lesson. This time, we want whatever
is typed into TextBox 1 to be evaluated, and
the result displayed (correctly, of course!) in
the second textBox.

Callstack

Globals.

Think about what will be needed for this to

T34 atcemp
235 attempt

Trest x| lua Texthores x

12 | Settings

happen before moving on to the next
section. You will need to get the expression
from TextBox1. Yes, we can do that.

This expression will need to be evaluated - think
back to lesson 17 and the math.eval command. But
in this case, the output is likely to be a fraction, or an
algebraic form, not just a string. So we will need a
new 3.2 command - math.evalStr.

But hold on. The input is wrapped in that funny layer

- TI-Nspire cannot evaluate it like that. So we need to
strip away the wrapping - and for that we will define

a neat little function which | call unpretty.

So strip away the wrapping and evaluate the result in
Nspire to produce a variable we will call Output.

Now we wish to display this result in TextBox2. We
can use the TextBox2:setExpression command. Easy.

But if we would like it to be presented in its own
MathBox and correctly formatted, then we simply
need to wrap that layer around it that we saw above.
Pretty neat.

Once again so many possibilities present themselves.

We could easily create and correctly display questions
in the first text box and have students enter answers

Document View:]| & | zoom: [200% | - +

areE
L 1.2 | 5626 | Running

function unpretty(input)

end

input = input:gsub("\\0el {", ")

input = input:gsub("}", ")

input = input:gsub(" ",

) or

return input

npt to index global ‘Textsox2' (a nil
to index global ‘textsoxl’ (a

8 nsert

function on.timer()

cursor.show()
Input = TextBox1:getExpression()
if Input then

Output =
math.evalStr(unpretty(Input))

if Output then

TextBox2:setExpression("\\Oel
{"..Output.."}")

end

end

(also correctly presented) in the second. platform.window:invalidate()

We could create our own TI-Nspire-based calculator end
in Lua and try all sorts of neat things with the results,
prototyping your own ideas for your students

learning.

Whatever you choose to do, it seems to me to be so much easier than trying laboriously to create your own
layout for fractions, algebraic terms and more using paint commands and strings. So have some fun!

Back to Top

Home « TI-Nspire Authoring + _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 22

