

Home ← TI-‐‑Nspire Authoring ← TI-‐‑Nspire Scripting HQ ← Scripting Tutorial -‐‑ Lesson 22

Scripting Tutorial -‐‑ Lesson 22: (3.2) Create Your Own Math Boxes

Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-‐‑Nspire Scripting Support Page

Create Your Own Math Boxes (3.2)

The 2D Editor certainly supports some exciting text-‐‑based

opportunities, but for me, where it shines lies in the potential to

make input and display of mathematical (and chemical) notation

easy.

1. Setting Up Your MathBox or ChemBox

Top of Page

Begin with exactly the same script as in the last lesson -‐‑ which

creates an active text box and stores any input to a TI-‐‑Nspire

variable called "input".

This time, however, add a single command:

TextBox1:createMathBox() or TextBox1:createChemBox(). The

magic is done!

Waiting for your input is a fresh math or chem box with cursor

flashing, ready to go!

platform.apilevel = "2.0"

function on.construction()

timer.start(0.4)

TextBox1 = D2Editor.newRichText()

end

function on.resize()

W = platform.window:width()

H = platform.window:height()

TextBox1:move(W*0.05, H*0.5)

TextBox1:resize(W*0.9,H*0.4)

TextBox1:createMathBox()

fontSize = math.floor(W/32)

fontSize = fontSize > 6 and fontSize

or 7

TextBox1:setFontSize(fontSize)

TextBox1:setBorderColor(500)

TextBox1:setBorder(1)

TextBox1:setTextColor(200*200*200)

TextBox1:setFocus(true)

end

function on.getFocus()

TextBox1:setFocus()

end

function on.timer()

cursor.show()

Input = TextBox1:getExpression()

if Input then

var.store("input", Input)

The chem box is basically just a presentation tool (which is
great, of course) but the MathBox is live and fully functional.
Type in a valid command, press enter and it evaluates -‐‑ just like
in Notes.

end

platform.window:invalidate()

end

function on.escapeKey()

TextBox1:setExpression(" ")

platform.window:invalidate()

end

2. Playing with Math
Top of Page

Look carefully at the output of each: the
result is wrapped in a simple layer of code.
For the MathBox, this is "\\0el {" and my
input and "}" while the ChemBox output is
even simpler -‐‑ "\\chem {" my input "}".

Hold on -‐‑ can't see that extra "\" in the
screen shots above? It is a reserved character
in Lua and so to have it recognised, you need
to add an extra one!! (Lucky I told you that,
isn't it?)

So now for our challenge: once again, as
shown, create two text boxes as you did in
the last lesson. This time, we want whatever
is typed into TextBox 1 to be evaluated, and
the result displayed (correctly, of course!) in
the second textBox.

Think about what will be needed for this to
happen before moving on to the next
section. You will need to get the expression
from TextBox1. Yes, we can do that.

This expression will need to be evaluated -‐‑ think
back to lesson 17 and the math.eval command. But
in this case, the output is likely to be a fraction, or an
algebraic form, not just a string. So we will need a
new 3.2 command -‐‑ math.evalStr.

But hold on. The input is wrapped in that funny layer
-‐‑ TI-‐‑Nspire cannot evaluate it like that. So we need to
strip away the wrapping -‐‑ and for that we will define
a neat little function which I call unpretty.

So strip away the wrapping and evaluate the result in
Nspire to produce a variable we will call Output.

Now we wish to display this result in TextBox2. We
can use the TextBox2:setExpression command. Easy.

But if we would like it to be presented in its own
MathBox and correctly formatted, then we simply
need to wrap that layer around it that we saw above.
Pretty neat.

Once again so many possibilities present themselves.

We could easily create and correctly display questions
in the first text box and have students enter answers

function unpretty(input)

input = input:gsub("\\0el {", "")

input = input:gsub("}", "")

input = input:gsub(" ", "") or ""

return input

end

function on.timer()

cursor.show()

Input = TextBox1:getExpression()

if Input then

Output =
math.evalStr(unpretty(Input))

if Output then

TextBox2:setExpression("\\0el
{"..Output.."}")

end

end

(also correctly presented) in the second.

We could create our own TI-‐‑Nspire-‐‑based calculator

in Lua and try all sorts of neat things with the results,

prototyping your own ideas for your students

learning.

platform.window:invalidate()

end

Whatever you choose to do, it seems to me to be so much easier than trying laboriously to create your own

layout for fractions, algebraic terms and more using paint commands and strings. So have some fun!

Back to Top

Home ← TI-‐‑Nspire Authoring ← TI-‐‑Nspire Scripting HQ ← Scripting Tutorial -‐‑ Lesson 22

