
19/07/12 10:30 AMScripting Tutorial - Lesson 23

Page 1 of 5file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 23

Scripting Tutorial - Lesson 23: (3.2) Welcome to the Physics Engine!

Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-Nspire Scripting Support Page

Welcome to the Physics Engine! (3.2)

Probably the most dramatic addition to TI-
Nspire's Lua capabilities (and possibly to
the entire TI-Nspire platform)
accompanying the 3.2 update lies in the
new Lua Physics Engine. Based upon the
open-source 2D physics Chipmunk engine,
this new library adds enormously powerful
simulation capabilities. Tools are provided
to model not only objects moving under
different forces, but a huge range of
modelling possibilities for mechanics,
physics and much more.

As with everything that has gone before, it
takes a very experienced programmer to
get the most out of this new feature set.
Nonetheless, there is still much that
amateurs (like me) can explore and make
good use of. These last few lessons in our
series offer some basic insights and
direction in getting started with the Nspire
Lua Chipmunk Physics Engine. For a
glimpse of where I plan to end up, have a
look at the accompanying movie (developed
by Alfredo Rodriguez from TI).

Click anywhere on this image for a video demonstration

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNSINTRO/TI-NspireCD/Start_Here.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/index.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/index.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23/script_tut23.zip
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/ScriptingPDF/ScriptLesson23.pdf
http://education.ti.com/nspire/scripting
http://chipmunk-physics.net/
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23/chipmunk0.mov

19/07/12 10:30 AMScripting Tutorial - Lesson 23

Page 2 of 5file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html

1. Getting Started with the Physics
Engine

Top of Page

Our first Chipmunk project will, naturally,
be less ambitious than the dazzling display
above. We will begin by sending a single
ball bouncing around the screen.

You might (correctly) observe that this can
be achieved without the need for a physics
engine - the magic of the timer can get
things moving without too much trouble,
and we could create a circle class that has
its location controlled by the timer.

So what does this Physics Engine offer that
makes it worth all the hype?

You may remember when we first
encountered classes, and the powerful
realization that these objects "knew" where
they were on the screen. This opens all
sorts of doors and makes many things,
which might otherwise be very complicated,
much simpler.

So it is with Chipmunk. Like classes, we
define objects (and these objects exist
within a "space") but the key lies in the
attributes that these objects may possess -
they possess a body and a shape (the part
we see), both of which carry attributes,
from simple things like mass, and gravity,
and velocity to more interesting things like
moments of inertia (the tendency of a body
to turn or spin while moving) right through
to friction and elasticity, and support for
collisions, damped rotary springs, pivot and
ratchet joints and simple motors.

Let me be clear at the outset that I do not
plan to be your guide to all of these far off
and exotic places - but we will learn
enough about things closer to home to get
you started, and from there - well, that is
up to you.

Click anywhere on this image for a video demonstration

2. Quick Start: Getting a Ball Bouncing

Top of Page

If you have not already done so, copy the
script from your browser window and paste
it into the TI-Nspire Script Editor, Set it by
pressing ctrl-s and enjoy the show. You
should see a blue circle bouncing around
the screen.

Since the physics engine is a feature only
available in OS 3.2, then the APILevel must
be set to 2.0. Critically important in 3.2 is
the new require command which currently

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html#top
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23/chipmunk1.mov
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html#top

19/07/12 10:30 AMScripting Tutorial - Lesson 23

Page 3 of 5file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html

supports a couple of options - require
"physics" (which provides access to the
physics library) and require "color" (which
provides access to a library of pre-defined
basic colours). Here we focus on the first of
these, but will demonstrate the second
later.

Next we define the space in which our body
will live - an essential part of the physics
world. Within this space, we will later define
such things as gravity but for now, gravity
will be assumed to be 0.

Most importantly, we define the body that
our object will occupy. Note that this has
no visual element - think of it as an empty
shell which possesses attributes, and which
will eventually require a shape in which it
can be cloaked (the shape may also carry
with it attributes such as elasticity
(properly called restitution in this physics
world) and friction - more on that later).
The physics.Body command takes two
inputs - mass (here set as 100) and
inertia, set as 0. Change these values and
see the effect.

Now we define the velocity of our body.
Velocity (like position and quite a few other
physics commands) takes as its argument a
vector, which makes sense when you think
about it since a vector carries both
direction and magnitude, measured initially
from the origin. So when we define velocity
as
newBody:setVel(physics.Vect(1000,1000))
imagine a vector from (0, 0) to the point
(1000, 1000) which gives both the initial
direction of motion (45 degrees down from
the horizontal), and the speed as the length
of the vector. The initial position is set by
default as (0, 0).

Finally, for the physics part, we add this
body to our space:
space:addBody(newBody). It is now
defined and ready to be used. Things like
position and velocity, of course, can be
changed at any point, which is what we do
in our on.paint function.

3. Painting the Visuals and the Action

Top of Page

Most of what appears in the on.paint
function should actually make sense if you
have worked through the previous lessons.
Define the window dimensions and then
assign simple names to the attributes of
our body - not just position and velocity,
but x and y components of these - all taken
care of when we defined our body
previously. See how this can make our lives

platform.apilevel = "2.0"

function on.resize()

require "physics"

space = physics.Space()

newBody = physics.Body(100, 0)

newBody:setVel(physics.Vect(1000,1000))

space:addBody(newBody)

timer.start(0.01)

end

function on.paint(gc)

local w = platform.window:width()

local h = platform.window:height()

local width = w/10

local pos = newBody:pos()

local vel = newBody:vel()

local velX = vel:x()

local velY = vel:y()

local posX = pos:x()

local posY = pos:y()

if posX > w then

velX = -1 * math.abs(velX)

posX = w

elseif posX < 0 then

velX = math.abs(velX)

posX = 0

end

if posY > h then

velY = -1 * math.abs(velY)

posY = h

elseif posY < 0 then

velY = math.abs(velY)

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html#top

19/07/12 10:30 AMScripting Tutorial - Lesson 23

Page 4 of 5file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html

easier when controlling this body?

In fact, the key element supported by the
physics engine that did not exist in any
practical way previously is that of velocity.
While we could use the timer to change the
position of an object, and control the speed
of this change by jumping more quickly,
there was no real way to control the actual
speed and direction which is true velocity.
This is powerfully important for simulations
of all sorts.

Restrict the movement of our body - if it
hits any of the screen boundaries, it gets
reflected/bounced off in the usual way -
and then redefine both position and
velocity (setPos and setVel) in terms of
these new coordinates. Again, you may
need to study what is happening here
closely to understand it. Take the time you
need.

Finally, give the body a shape - in this case,
a blue circle which simply follows the
location of the body as it moves around the
screen. Clearly we could use any shape we
liked, or even an image here, as long as we
set its position to posX and posY.

5. Kick Starting the Show

Top of Page

Get the timer defined (note the nice
space:step) command), refresh the screen
as required, and we are done.

By placing the initial conditions within a
resize function, these will be called when
the page is first created and whenever it is
resized (not possible on the handheld, of
course). Resizing the window will start
everything over again, but ensure that the
window size is accounted for.

posY = 0

end

newBody:setPos(physics.Vect(posX,
posY))

newBody:setVel(physics.Vect(velX, velY))

gc:setColorRGB(0, 0, 255)

gc:fillArc(posX, posY, width, width, 0,
360)

end

function on.timer()

space:step(0.01)

platform.window:invalidate()

end

Now, as usual comes the fun part, where you get to play around.

I would suggest that you begin with the initial velocity - try varying the vector and see the effects. What
if, instead of (1000, 1000), we began with (1000, 0) - before you run it, think: what do YOU think the
effect will be? What about (-100, -100)? Why?

You may want to try a new starting position. Add the window size definitions for w and h to the resize
function (just copy and paste them from on.paint) and, after the setVel line, add something like
newBody:setPos(physics.Vect(w/2,h/2)).

Can you make the ball begin in the bottom right corner?

Do you notice that our ball bounces correctly from the left and top of the screen, but runs over on the
right and bottom? How could you adjust for this so that it bounces correctly from all four walls?

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html#top

19/07/12 10:30 AMScripting Tutorial - Lesson 23

Page 5 of 5file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html

How about a square instead of a circle?

How could you make the motion stop - say, on pressing the enter key? Think about this - play with
different ideas and we will pick this up in the next lesson.

The document chipmunk_simple.tns included for download with this lesson includes answers to each
of these questions.

Back to Top

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 23

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23/script_tut23.zip
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23.html#top
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNSINTRO/TI-NspireCD/Start_Here.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/index.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/index.html

