
19/07/12 6:53 PMScripting Tutorial - Lesson 24

Page 1 of 7file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 24

Scripting Tutorial - Lesson 24: (3.2) Welcome to the Physics
Engine Part 2

Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-Nspire Scripting Support Page

Welcome to the Physics Engine Part 2 (3.2)

The previous lesson gave a
useful Quick Start to the
Physics Engine, but if we are
going to use it to advantage,
then not only are there many
more commands to learn,
but there are structural
approaches to designing our
scripts that we could and
should take advantage of.
This lesson approaches the
same problem as previously
- getting a ball bouncing
around the screen - but in a
more sustainable and
effective way.

Click anywhere on this image for a video demonstration

1. The Big Picture: Looking
at the Structure of our

Script

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNSINTRO/TI-NspireCD/Start_Here.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/index_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/index_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24/script_tut24.zip
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/ScriptingPDF/ScriptLesson24.pdf
http://education.ti.com/nspire/scripting
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut23/chipmunk1.mov

19/07/12 6:53 PMScripting Tutorial - Lesson 24

Page 2 of 7file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html

Top of Page

If you have not already done
so, copy the script from your
browser window and paste it
into the TI-Nspire Script
Editor, Set it by pressing ctrl-
s and enjoy the show. You
should see an orange circle
bouncing around the screen.

First observe that by defining
all the variables up front as
local then they will stay that
way - and local variables are
always much more efficient
(performance-wise) than
globals. They are also
defined for all subsequent
functions. Our previous
approach - defining, say, w
and h as local within the
on.resize function means
that they are only defined
within that function and must
be defined again to be
reused. The approach taken
here is more efficient in lots
of ways.

We have quite a new
structure for this script,
beginning with a user-
defined function called init.
Not surprisingly, this is
where the initial conditions
are specified and variables
are defined. But study the
last few lines. The usual
on.paint function is defined
here as equivalent to our own
user-defined paint function,
which is then defined next.
This takes care of the actual
layout on the screen -
including the moving ball.
Finally, the timer function is
defined.

Now that everything has
been defined - but nothing
has actually been called - the

platform.apilevel = "2.0"

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html#top

19/07/12 6:53 PMScripting Tutorial - Lesson 24

Page 3 of 7file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html

has actually been called - the
very last function is a resize
which calls on.paint directing
it to our init function. So this
will be run first - as required,
defining and initializing
everything. It then redirects
any subsequent on.paint
calls to our paint function. It
also serves as a possible
reset: any time the screen is
resized or that this is called,
on.paint goes back to calling
the init function (just once)
and things start over again.

Think about this. It means
that the init function will
only be run once, and after
that calls will go to the paint
function, where the location
of the moving ball is defined
and controlled. You may
need to think about this for a
bit - I know I did at first.

2. init: Getting Things Set
Up

Top of Page

Here we will use both
require "physics" (which
provides access to the
physics library) and require
"color" (which provides
access to a library of pre-
defined basic colours).

Next we define the space in
which our body will live.
Within this space, we will
define gravity. As expected,
this tends to pull things
downwards towards the
bottom of the screen. Try
different values and see the

effect - 0, 9.8, 100...

Another option for us at this
stage concerns inertia - or

local W

local H

local space

local newBody

local newShape

local pos

local vel

local velX

local velY

local posX

local posY

local width

local gravity

local mass

local inertia

local elasticity

local friction

function init(gc)

W = platform.window:width()

H = platform.window:height()

require "physics"

require "color"

space = physics.Space()

mass = 100

width = W/10

gravity = 9.8

elasticity = 1

friction = 1

space:setGravity(physics.Vect(0, gravity))

inertia =
physics.misc.momentForCircle(mass, 0,
width, physics.Vect(0,0))

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html#top

19/07/12 6:53 PMScripting Tutorial - Lesson 24

Page 4 of 7file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html

stage concerns inertia - or
more formally, the moment
of inertia for the circle, or
whatever shape we decide for
our body. The arguments for
this property for a circle are
the mass, the inner radius,
the outer radius, and the
offset of the shape from its
center. Here we have set the
inner radius to be 0 and the
outer radius to be the width,
giving us a solid ball. Think
about how you might vary
this and try some alternatives
- for example, inner radius
equal to outer radius
describes just the shell of a
circle - how does this
behave?

The initial position is set in
the same way as velocity,
using a vector.

Now that we have our body
defined, we can cloak it in a
shape - choices are segment,
box, circle and polygon. As
mentioned, the shape carries
attributes such as elasticity
and friction. Since we are not
adding these in this lesson,
we could have left this step
out and simply linked the
body to a visible object which
shares the same x and y
coordinates. However, I
decided to set things up as
you would generally do, and
to add attributes later. You
will notice that the circle
shape takes as its arguments
the body, the radius and a
value for the offset of this
shape from its center - here
we set that using a vector
allowing for the radius of the
circle.

Since we have gone to the
trouble of creating a shape,
then we may as well give it

newBody = physics.Body(mass, inertia)

newBody:setVel(physics.Vect(1000,1000))

newBody:setPos(physics.Vect(0, 0))

newShape =
physics.CircleShape(newBody, width/2,
physics.Vect(0,0))

newShape:setRestitution(elasticity)

newShape:setFriction(friction)

space:addBody(newBody)

space:addShape(newShape)

on.paint = paint

paint(gc)

timer.start(0.01)

end

function paint(gc)

pos = newBody:pos()

vel = newBody:vel()

velX = vel:x()

velY = vel:y()

posX = pos:x()

posY = pos:y()

if posX > W - width then

velX = -1 * math.abs(velX)

posX = W - width

elseif posX < 0 then

velX = math.abs(velX)

posX = 0

end

if posY > H - width then

19/07/12 6:53 PMScripting Tutorial - Lesson 24

Page 5 of 7file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html

then we may as well give it
some attributes - in
particular, restitution (better
thought of as elasticity) and
friction. A shape with
elasticity equal to 1 is
perfectly elastic - any
collision causes no loss of
momentum. Values less than
1 are less elastic, and greater
than 1 leads to some
interesting behaviors - but
usually to errors. Friction
values greater than 0 will
also result in loss of energy
with each collision. Try some
different values and see the
effects.

Finally we add this body and
shape to our space:
space:addBody(newBody)
and
space:addShape(newShape).
To finish, redirect paint as
described above, start the
timer running and we are
ready to set up the visuals.

3. paint: Showing Off the
Visuals and the Action

Top of Page

The user-defined paint
function defined here is
(almost) identical to the
on.paint version used in the
simple version. Observe the
use of the require "color"
command here - we can
simply call basic colors by
name - color.orange,
color.yellow, etc.

Note that, while we could use
any shape we liked, or even
an image here, as long as we
set its position to posX and
posY, remember that we
defined our shape formally

velY = -1 * math.abs(velY)

posY = H - width

elseif posY < 0 then

velY = math.abs(velY)

posY = 0

end

newBody:setPos(
physics.Vect(posX, posY))

newBody:setVel(
physics.Vect(velX, velY))

gc:setColorRGB(color.orange)

gc:fillArc(posX, posY, width,
width, 0, 360)

end

function on.timer()

space:step(0.01)

platform.window:invalidate()

end

function on.resize()

on.paint = init

end

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html#top

19/07/12 6:53 PMScripting Tutorial - Lesson 24

Page 6 of 7file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html

defined our shape formally
as a circle and, while we
could attach any visual to
this body at this point, the
behavior physically displayed
will be consistent with that of
a circle.

4. Kick Starting the Show

Top of Page

The timer function is also
unchanged from previously,
but observe the new
on.resize function in which
the on.paint function is
being pointed back to run
the init function.

Placing the on.paint = init
assignment inside the
on.resize function does not
actually bring any major
advantage in this script. It
would have worked just as
well to have it simply sitting
at the end of the script
without being inside a
function at all. The benefit
would come if we actually
wished to resize the page,
since this will force the script
to reset, taking account of
the new window dimensions
and everything would start
over, in correct proportion.

Now to try some variations.

How could you make the motion pause?

Try adding an on.enterKey function which stops and starts the motion.

Now what about an on.escapeKey function that resets everything - starts it
over again?

Now what about for the Player?

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html#top

19/07/12 6:53 PMScripting Tutorial - Lesson 24

Page 7 of 7file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html

We have no keyboard control in the Player, so how about a button in, say, the
bottom left corner which stops and starts the motion?

AND what about if, wherever I click the mouse (on.mouseUp) it resets the
motion and starts the ball moving from that point?

These will be covered in the next lesson, and we will look at juggling multiple
balls of different colors - much more fun!

Back to Top

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 24

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html#top
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNSINTRO/TI-NspireCD/Start_Here.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/index_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/index_local.html

