
19/07/12 6:48 PMScripting Tutorial - Lesson 25

Page 1 of 4file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25_local.html

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 25

Scripting Tutorial - Lesson 25: (3.2) Welcome to the Physics Engine Part 3:
Juggling Multiple Balls

Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-Nspire Scripting Support Page

The previous lesson set the stage for
what will follow - this lesson guides us
through controlling the flow of the
simulation - starting, stopping and
resetting. Most importantly, we learn how
to work with multiple objects.

Click anywhere on this image for a video demonstration

1. Pausing and Resetting

Top of Page

Begin by returning to the question posed
previously: how do we stop the show?

The key lies in the timer function, not

surprisingly. Currently set at 0.01
(refreshing 100 times per second - the
maximum supported by our platform), if
this changes to zero, then the motion
stops. So create a local variable called
"pause". As before, set this up with all the
other local variables at the start of the
script, and then, in the init function, set
the initial value - pause = 1. If we had
set this to 0, then on opening the file or
on resetting it at any stage, motion would
initially be stopped.

Next, change the on.timer function from
space:step(0.01) to

local pause

function init(gc)

...

pause = 1

...

end

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNSINTRO/TI-NspireCD/Start_Here.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/index_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/index_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25/script_tut25.zip
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/ScriptingPDF/ScriptLesson25.pdf
http://education.ti.com/nspire/scripting
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut24_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25/chipmunk2.mov
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25_local.html#top

19/07/12 6:48 PMScripting Tutorial - Lesson 25

Page 2 of 4file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25_local.html

space:step(0.01) to
space:step(0.01*pause). This way, when
pause = 1 there is no change to what was
happening previously, but when pause =
0, the timer step becomes 0 and all
grinds to a halt.

Resetting is even more straightforward -
we anticipated this with our resize
function at the end. We can either call
on.resize() or simply on.paint = init.
This just sets everything back to the start.

Now all we need are triggers to make
these events happen - initially, I am using
the enterKey to stop and start the
motion, and the escapeKey to reset
everything.

These functions can be placed after
everything else - when their events are
triggered, they will be found wherever
they are placed.

This script will work perfectly well on the
handheld and computer, but will not be
of any use if we wish to control this
document using the Player, since
keyboard controls are not supported. For
this case, and just for a better and more
useful document, we will add buttons to
start, stop and reset the motion. I would
also like to be able to click anywhere on
the screen and have the motion begin
again from that point.

We will come back to these features later

- first, though, I suspect that, like me,
you might be keen to see how we might
have more than a single ball in the air?

end

function on.timer()

space:step(0.01*pause)

platform.window:invalidate()

end

function on.enterKey()

pause = pause == 1 and 0 or 1

platform.window:invalidate()

end

function on.escapeKey()

on.resize()

platform.window:invalidate()

end

2. Working with Multiple Objects

Top of Page

It should come as no surprise that
multiple objects will involve setting up a
table or two.

Study the code fragments opposite.
Similar changes are made to both the init
and paint functions: the main part of
each script is wrapped in a loop, which
cycles through for the number of objects
that you want. Here, we set our initial
value of totalBodies to 10. We also create
two empty tables - one for bodies and
one for shapes.

Apart from wrapping the for loop around
the parts of the code that create and
direct our bodies and shapes, a few extra
lines are added in the init function - we
want all our objects to start in different
locations, so adding random initial

local totalBodies

local bodies

local shapes

local initX

local initY

local Colors

local colorNum

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25_local.html#top

19/07/12 6:48 PMScripting Tutorial - Lesson 25

Page 3 of 4file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25_local.html

locations, so adding random initial
coordinates is a good idea, and then
table.insert is used to add each new
body to the bodies table, and each new
shape to the shapes table.

In the paint function, note the simple
change when we set the velocity and the
position - instead of setting these for a
single object called newBody and
newShape, this occurs for each member
of the tables, bodies[k] and shapes[k].
You should now have 10 blue balls
bouncing around!

Clearly, multiple balls of the same color is
not all that interesting. We have require
"color" in our script, so why not use it?

A simple way to do this is to build a color
table, here called Colors and we will need
a number to reference our table,
colorNum. Finally, the chosen color will

be called chooseColor. These are defined
in the init function and then called in
paint when we actually create our colorful
bodies.

As each body is painted, a color is chosen
in turn from our table, cycling back when
the number of objects exceeds the table
length.

Finally, it would be neat to be able to
control the number of objects on the fly. I
have chosen to use the up and down
arrow keys for this purpose - increasing
and decreasing the value of totalBodies
and then forcing a reset so that the
objects are redrawn with the new value. I
have also linked to a slider variable ("n")
in TI-Nspire.

For this to work, however, I need to have
my init function check for the current
value of "n" and use that for the
totalBodies value. So in this functions,
add totalBodies = (var.recall("n") or 5).
Resetting using escape and using the
arrow keys will also check the current
value and adjust accordingly.

function on.arrowUp()

totalBodies =
(var.recall("n") or 5)

totalBodies = totalBodies
+ 1

var.store("n", totalBodies)

on.resize()

local colorNum

function init(gc)

...

require "color"

Colors = {color.gray, color.red, color.orange,
color.yellow, color.green, color.blue, color.black}

colorNum = 1

bodies = {}

shapes = {}

totalBodies = (var.recall("n") or 5)

for i=1,totalBodies do

newBody = physics.Body(mass, inertia)

newShape =
physics.CircleShape(newBody, width,
physics.Vect(0,width/2))

newShape:setRestitution(elasticity)

newShape:setFriction(friction)

newBody:setVel(physics.Vect(1000,1000))

initX = math.random(W)

initY = math.random(H)

newBody:setPos(physics.Vect(initX, initY))

table.insert(bodies, newBody)

table.insert(shapes, newShape)

space:addBody(newBody)

space:addShape(newShape)

end

end

function paint(gc)

for k=1,totalBodies do

...

bodies[k]:setPos(physics.Vect(posX,
posY))

bodies[k]:setVel(physics.Vect(velX,
velY))

chooseColor = Colors[((colorNum + k) %
#Colors) + 1]

gc:setColorRGB(chooseColor)

gc:fillArc(posX, posY, width, width, 0,
360)

end

19/07/12 6:48 PMScripting Tutorial - Lesson 25

Page 4 of 4file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25_local.html

end

function on.arrowDown()

if totalBodies > 1 then

totalBodies =
(var.recall("n")

or 5)

totalBodies =
totalBodies -
1

var.store("n",
totalBodies)

on.resize()

end

end

end

end

function on.resize()

on.paint = init

end

The buttons for reset and pause involve images, as well as the use of mouse commands. To make
these simpler, I defined a rectangle class, and then rectangles for both buttons so that I could simply
check if a mouse click is contained in one of these.

I also added another rectangle across the top to serve as a "grabber" and this allows the buttons to
be moved around as desired.

Rather than occupy another page detailing these changes, I would direct you to the document which
accompanies this lesson, where you may study and play with these variations to your heart's content.

The next (final?) lesson in the sequence will look at varying from the circle to other shapes, polygons
and segments in particular. In this way, the user can vary the number of objects, the type of objects,
control their motion - and after that, it is over to you!

Back to Top

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 24

file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/script_tut25_local.html#top
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNSINTRO/TI-NspireCD/Start_Here.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/index_local.html
file:///Users/Steve/Documents/Dropbox/Documents/Documents/WebPage/TNS_Authoring/Scripting/index_local.html

