Scripting Tutorial - Lesson 26 5/08/12 2:06 PM

TI-72spire

Home < _TI-Nspire Authoring « _TI-Nspire Scripting HQ + Scripting Tutorial - Lesson 26

Scripting Tutorial - Lesson 26: (3.2) Welcome to the Physics
Engine Part 4: Adding Segments as Shapes

Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-Nspire Scripting Support Page

Continuing once again from the previous lesson, there appears to be no visible
difference once we have applied the changes described below. However, what we
have done is to introduce a new type of shape - the segment - which joins the
circle in our new repertoire of physics shapes. You will also learn some new
scripting techniques which will prove useful in the future.

Bounding our Space

Top of Page

The main change in this script
occurs in the init function. We
will remove from our previous
paint function the four
statements which check when
our moving bodies lie within
the boundaries of the page
and replace these with a
different approach. The four
"walls" of the screen will be
defined using segments.
These segments will not be
visible - we will give them no
shape that we can see, but

http://compasstech.com.au/TNS_Authoring/Scripting/script_tut26.html Page 1 of 4

http://compasstech.com.au/TNSINTRO/TI-NspireCD/Start_Here.html
http://compasstech.com.au/TNS_Authoring/index.html
http://compasstech.com.au/TNS_Authoring/Scripting/index.html
http://compasstech.com.au/TNS_Authoring/Scripting/script_tut26/script_tut26.zip
http://compasstech.com.au/TNS_Authoring/Scripting/ScriptingPDF/ScriptLesson26.pdf
http://education.ti.com/nspire/scripting
http://compasstech.com.au/TNS_Authoring/Scripting/script_tut25.html
http://compasstech.com.au/TNS_Authoring/Scripting/script_tut26.html#top

Scripting Tutorial - Lesson 26

they will have a certain
thickness (1 unit in this
example) and they will also
have restitution (elasticity) and
friction attributes, which can
be varied.

Can you see the benefits of
such an approach?

| choose here to define a
function, called bounds,
define these segments within
this function, and then simply
call the function within our init
routine. | choose to do this
immediately after defining the
space and before we create
any other objects.

The segments will be defined
within a table, here called
boundaries and so, naturally,
we begin by defining this as a
local variable at the start of
the script, and define the table
as empty within the init
function.

You will recall previously that
we defined bodies and shapes
and added these to our space.
A slightly different approach is
taken here. Since the four
"walls" will not be required to
move, they may be defined as
StaticShapes instead of the
usual shape. As such, you
may notice that there is no
body defined. Think about
this.

For most physics objects, the
body is the key component,
the shape an optional "cloak”
by which the body can be
made visible and be given
certain properties. For static
shapes, no body is required.
Instead, we define these static
shapes and provide these with
properties, like elasticity and
friction as desired.

http://compasstech.com.au/TNS_Authoring/Scripting/script_tut26.html

local boundaries

function init(gc)

boundaries = {}

space = physics.Space()
bounds(W, H)

function bounds(w, h)

-- Set the boundary walls

for _,wall in ipairs(boundaries) do
space:removeStaticShape(wall)

end

local bound

bound = physics.SegmentShape(nil,
physics.Vect(0,0), physics.Vect(w, 0), 1)

: setRestitution(elasticity)

: setFriction(friction)
space:addStaticShape(bound)
table.insert(boundaries, bound)

bound = physics.SegmentShape(nil,
physics.Vect(0,H), physics.Vect(w, h), 1)

5/08/12 2:06 PM

Page 2 of 4

Scripting Tutorial - Lesson 26 5/08/12 2:06 PM

We also introduce two new - setRestitution(elasticity)
commands: o o
removeStaticShape and : setFriction(friction)

addStaticShape. space:addStaticShape(bound)

If you study the first few lines

]) table.insert(boundaries, bound)
of our bounds function, this

actually clears away any bound = physics.SegmentShape(nil,
existing static shapes, so that physics.Vect(0,0), physics.Vect(0, h), 1)
these do not accumulate with

mu|t|p|e calls on resize. : setRestitution(elasticity)

Strictly speaking, since we are
defining the table boundaries
as empty just prior to the call
to bounds, then this is

. setFriction(friction)

space:addStaticShape(bound)

probably not strictly table.insert(boundaries, bound)
necessary, but it does

illustrate a neat way to run bound = physics.SegmentShape(nil,
through the elements of a physics.Vect(w,0), physics.Vect(w, h), 1)
table using the ipairs o .
command. . setRestitution(elasticity)

N . - setFriction(fricti
After defining a local variable, setFriction(friction)

bound, we then create a space:addStaticShape(bound)
segment called bound for each

of the four "walls", adding table.insert(boundaries, bound)
each in turn to the table

boundaries. As you see, end

segments are defined using
the physics.SegmentShape
command, which takes as its
arguments a body (or, as in
this case, nil), a vector to
represent the start of the
segment, another for the end
point, and a value for the
"radius” or thickness of the
segment.

Note the neat technique next
illustrated for adding two
properties to the variable just
defined. We can omit the usual
syntax,
bound:setRestitution(elasticity)
and, since these immediately
follow the definition of bound,
the leading colon suffices to
call this.

Each new bound is then added

to the space as a static shape,
and then added to the table,

http://compasstech.com.au/TNS_Authoring/Scripting/script_tut26.html Page 3 of 4

Scripting Tutorial - Lesson 26 5/08/12 2:06 PM

boundaries.

The final result are four "walls
which not only reflect the balls
which hit them, but actually
bounce them off!!

Your challenge this time? You will notice, | am sure, that they don't quite bounce
as we would expect - some of the walls seem to allow the balls to travel too far;

others, too little.
Can you fix this, so that the balls bounce directly as they hit the four walls?

The next (and currently, final) lesson in the sequence will explore shapes without
an infinite number of sides - in other words, we expand our shapes from circles
and segments to polygons, with the option to vary the number of sides as you
choose!

Back to Top

Home < TI-Nspire Authoring « _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 26

http://compasstech.com.au/TNS_Authoring/Scripting/script_tut26.html Page 4 of 4

http://compasstech.com.au/TNS_Authoring/Scripting/script_tut27.html
http://compasstech.com.au/TNS_Authoring/Scripting/script_tut26.html#top
http://compasstech.com.au/TNSINTRO/TI-NspireCD/Start_Here.html
http://compasstech.com.au/TNS_Authoring/index.html
http://compasstech.com.au/TNS_Authoring/Scripting/index.html

