

Home ← TI-‐‑Nspire Authoring ← TI-‐‑Nspire Scripting HQ ← Scripting Tutorial -‐‑ Lesson 28

Scripting Tutorial -‐‑ Lesson 28: (3.4) Scripting for Touch-‐‑enabled Devices
Download supporting files for this tutorial

Download this page in PDF format

Texas Instruments TI-‐‑Nspire Scripting Support Page

The release in early 2013 of the TI-‐‑Nspire
apps for iPad brings with it exciting new
opportunities for the entire platform. Lua
scripted documents are particularly well suited
to take advantage of the touch-‐‑enabled
interface, and there really is nothing like the
experience of dragging objects around the
screen with finger or stylus!

While most current scripts, if written to take
advantage of larger screen size, should run
just fine on the new platform, there are a few
considerations that can serve to optimize this
experience. Some new commands have also
been added to the TI-‐‑Nspire Lua command
set.

Click anywhere on this image for a video demonstration

1. Touch-‐‑enabled? APILevel = 2.2
Top of Page

Touch-‐‑enabled functionality has actually existed within our scripting capabilities since the release of TI-‐‑Nspire OS 3.2
-‐‑ we just have not had a platform to try it on until the release of the iPad apps (OS 3.4). A new APILevel is required -‐‑
to make use of these commands, your script must begin by defining APILevel = 2.2 (Note: the previous APIlevel (2.0)
added support for the Physics engine). APILevel 2.2 adds touch support, as well as all previous functionality.

So what is touch support and where is it required?

Existing scripts that involved grabbing and dragging objects around the screen will work well in a touch-‐‑enabled
environment -‐‑ mouseUp, mouseDown and mouseMove commands perform pretty much as expected, and so no
changes should be required (other than perhaps requiring a double tap where a single mouse press might work
elsewhere).

If you have been using the 2DEditor text boxes for capturing and displaying input of text, then these will also work
well in this new world: tapping in a text box on a tablet will activate the system keyboard. While this may well take up
half of the visible screen, typing will have the desired effect and text will be entered and displayed using the text box.

Recommendation: Since the system keyboard will obscure the bottom half of the viewable window, where
possible place text boxes towards the top of the screen so that they remain visible when the keyboard is
active. (You will notice on the iPad app that the function entry line in the Graphs app has been moved from the
bottom to the top of the screen for exactly this reason!)

The iPad offers users several options for
using the in-‐‑built keyboard which may
also help here. The key at the bottom
right of the keyboard usually serves to
dismiss the keyboard. Hold it down,
however, and two options apear:
"Undock" and "Split". Choose the first
and your keyboard is now floating -‐‑ use
the same key to move it up and down.
In this way you may position the
keyboard to better access screen
content.

The "Split" option breaks the keyboard into two halves, reducing its size substantially and optimizing it for "thumb"

typing. This split keyboard is also draggable and may easily be repositioned. (NOTE: the TI-‐‑Nspire mathematical

keyboard is unavailable in this mode, but can be dragged up and down as described above).

2. Adding a Little Touch Magic to your
Scripts
Top of Page

Study the script opposite.

Most of this script is a standard text input

vehicle -‐‑ an empty string (msg) is defined,

and then as text is typed, each character is

added to this string, which is displayed in

the center of the screen.

What is different about this script is the

on.mouseUp() command (shown in red.)

On a non-‐‑touch device (computer or

handheld) this script will ignore these

commands, and will run as expected. On a

touch device, this function checks whether

touch is enabled when the mouse is clicked

anywhere on the screen. If so, then it checks

if the keyboard is visible. if not, then it is

displayed; if it is visible, then the keyboard

is hidden.

This small code snippet is all that is needed

to make a script touch-‐‑ready. It may be

used in a variety of ways. Simplest is

probably the example shown, where tapping

anywhere on the screen tests for touch and

keyboard visibility.

But what if there are other objects that need

to respond to such a tap -‐‑ buttons,

sliders...? A simple solution might be to pick

a section of the window (eg if y < 0.2*h -‐‑

tapping at the top of the screen will activate

the keyboard).

Of course, you could just add a button and

label it "keyboard" or "keyPad". In the

example shown, the first screenshot is taken

on a computer (or handheld), where no

keyBoard is required -‐‑ typing normally

displays what is typed. The second shot

comes from an iPad -‐‑ tapping the blue

"keyBoard" button here brings up the iOS

keyboard.

It is even possible, as shown here, to use the

touch and touch.enabled tests to determine

whether to display items like buttons: so we

see that, on non-‐‑touch platforms, the

button is not displayed.

platform.apilevel = 2.2

local screen = platform.window

local w = screen:width()

local h = screen:height()

local msg = ""

function on.mouseUp()

if touch and touch.enabled() then

if touch.isKeyboardVisible() == false

then

touch.showKeyboard(true)

else

touch.showKeyboard(false)

end

end

end

function on.charIn(ch)

msg = msg .. ch

screen:invalidate()

end

function on.backspaceKey(ch)

msg = msg:usub(0, -‐‑2)

screen:invalidate()

end

function on.paint(gc)

w = screen:width()

h = screen:height()

gc:setColorRGB(50, 50, 150)

gc:setFont("sansserif", "i", 12)

local str = "Type to enter text..."

gc:drawString(str, 0.1*w, 0.1*h, "middle")

gc:setColorRGB(150, 50, 50)

gc:setFont("sansserif", "b", 18)

Study these features within the script for the
document touch_Button.tns in the

supporting documents collection for this
tutorial. You may also be interested in the

code which adds the buttons.

local sw = gc:getStringWidth(msg)
gc:drawString(msg, (w -‐‑ sw)/2, h/4, 'middle')

end

3. Optimizing Scripts for a Touch Platform

Top of Page

While the iPad display shares more with the
computer than the handheld (so nice to have
the room to move on a larger screen), under
the hood there is a key similarity with the
handheld: triggering frequent screen
refreshes is an important consideration
when coding. This may take the form of
adding platform.window:invalidate() to any
functions that involve changes to the
display. It may even involve adding a timer
than triggers a screen refresh at regular
intervals. But if you want to see changes to
the screen when expected, then this must be
a part of your code.
Another important difference particular to
touch enabled devices is the size of the
pointer: the finger or stylus is a much bigger
selection tool than mouse on computer or
handheld, and this also needs to be factored
into your scripts.
This may involve revising the "contains"
function for selected classes of objects.
Consider a circle used as the driver for a
slider. If r is the radius of the circle and d
the distance between the center and the
current (x, y) point, then we usually define
the "contains" property to be true and d <=
r. For some scripts, it may be of value to
define this as d <= 2*r or even 3*r.
You might also consider having your
selection object "grow" upon selection so
that it is visible underneath the finger or
stylus.
These ideas are exemplified in the links
opposite.

Back to Top

Home ← TI-‐‑Nspire Authoring ← TI-‐‑Nspire Scripting HQ ← Scripting Tutorial -‐‑ Lesson 28

