TI-72spire

Home « TI-Nspire Authoring < _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 3

Scripting Tutorial - Lesson 3

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

In this lesson we extend our use of TI-Nspire-based variables within our Lua
script. In this way we can easily customize our document and, with a change to
just one line, produce a page that can be very useful to those wanting to take
advantage of Lua in their own TI-Nspire documents.

First, though, we will shift our tool use from Oclua to the TI-Nspire Scripting
Tool. This is a Windows utility - Mac users need to find other alternatives. It is
light and easy to use, but quite different than Oclua.

Lesson 3.1: Using the TI-Nspire Scripting Tool

While Oclua allows the entire scripting process to occur within a single
application (TI-Nspire), three applications are required for use with the TI-
Nspire Scripting Tool. Scripts are written within a word processing package, or
just a simple text editor, such as Notepad++. The script is then saved with the
".lua" suffix ; it is thus saved as a Lua file.

The TI-Nspire Scripting Tool then takes that file and stores the compiled
version on the clipboard, from where it may be pasted into a blank TI-Nspire
window.

1. Type or paste your script into Notepad ++ or a simple text editor.
2. Save as a .lua file.

3. Open TI-Nspire Scripting Tools.

4. Tools>Load Script App. Find the script and choose Open.

5. Though you will not see the script it will be &€cepasteda€ into the
Scripting Tool and a message will be displayed : Script App has been
loaded to clipboard successfully. Choose OK.

6. Open a new window in TI-Nspire and paste the script. You will not see the
script, but will see the result of the script.

This process
is
demonstrated
in the short
movie
available here
(again - do
not hesitate

Click anywhere on this image for a video demonstration

to PAUSE') 2 ‘-"""' \O ‘ 2ge\TNS ,_Iutl\xnp!_(utllua-Ne’!epedn] oo S
The Scripted 3 mu Edit Search vmi\ inccjmq Lav\gua?e Sﬂh:s ‘:l‘\hclci Rfm Plugins :‘..mdc‘.t” -] B X
window can T 3
be selected aravstring then diplays each line centered on Ghe window at equal Tncervals frem top to Bovee :
(ctrl-k) and .

copied (ctrl-¢) ™ emtton on.petat ge)
and then
pasted into s _e=
new TI-Nspire Jocal 14ne
documents if 2% e
so desired. \
Unlike Oclua 3&& ; Al
documents,
closing and l
reopening the
file once it
has been
created will
not cause
problems.
The window
remains live
and active.

,h*k/(linecount+!) + strheight/?) ents/We
end —

Lesson 3.2: Varying our Display Lines

One simple change in the
script turns our short multi-
line display document into a
much more usable tool.

The line in which each line of
the table is created in the
previous script was:

line1:="This is more like it!"

table[k] = "Line > This is more like it!
#". .k line2
:="Now we can easily create our own display"
This glues the current value This is more like it! > Now we can easily create our own display
of "k" to the string "Line #", so line3:="Enjoy!" > Enjoy!

that the first line will display
as "Line #1", and so on.

Now we can easily create our own display

You will remember that the
var.recall command grabs the
current value of a TI-Nspire
variable and makes it

available to Lua. In our S
example, we used this device

to grab the number of lines

we wished to display.

Now suppose we set up a 3 lines =3,

variable called, for example,
linel, the contents of which
we want to be the first line?
Then another called line2 and
so on? We could easily control
the contents of our display,
and change them at any time
from within TI-Nspire.

For this to happen, we could
simply change the line above
to

table[k] =

var.recall("line"..k
(() Click anywhere on this image for a video demonstration

or "Line #"..k)

line1:="This is more like it!"

This is more like it!

Study this new line and see if
you can understand what is line2
happening. This is more like it! :="Now we can easily create our own ¢
Wh K 1 Il look Now we can easily create our own
en k = 1, var.recall looks
for a variable named linel
and stores it as table[1] (the
first entry of the table, Now we can easily create our own display
"table"). If it cannot be found,
then this line becomes just
"line #1" (possibly a better
choice might be a blank line, Enjoy!
") k

line3:="Enjoy!" * Enjoy!

When k = 2, table[2] is

defined as the current value
of the variable line2, and so A
on. v lines =3,

So by storing values into
these variables within your
TI-Nspire document, they are
immediately displayed within
your Lua scripted page.

Lesson 3.3: Conditions

In our simple introduction to Lua scripting, we need one more ingredient:
conditional statements: "if...then...else...end" (in TI-Nspire, the same syntax
applies, except it finishes with "endif"!).

Suppose we would like our first and last lines to be highlighted in some way:
perhaps a different color, or bold instead of plain style? This is easily achieved
in our script.

for k = 1, linecount do
gc:setFont("sansserif", "r", 10)
gc:setColorRGB(158, 5, 8)

table[k] = (var.recall("line"..k) or "Line #"..k)
strwidth = gc:getStringWidth(table[k])
strheight = gc:getStringHeight(table[k])

gc.drawString(table[k], w/2 - strwidth/2 ,h*k/(linecount+1) +
strheight/2)

end
We just need to add a local linecount = (var.recall("lines") or 1)
condition to the setFont and local table = {}
setColor commands! Some Question 1: Factor
thing like for k = 1, linecount do
. . if kK == 1 or k == linecount then
ifk==1ork == i

gc:setFont("sansserif", "b", 10)
gc:setColorRGB(20, 20, 138)

else|

linecount then

Answer?

gc:setFont("sansserif", "r", 10)
(x+2)(x+2) gc:setColorRGB(158, 5, 8)
end
% lines =4, table[k] = (var.recall("line"..k) or "Line

#'.k)

ielbhy o $Ctim mMALi sl lafl1y ™

gc:setFont("sansserif", "b", 10)

gc:setColorRGB(20, 20, 138)
else

gc:setFont("sansserif", "r", 10)

gc:setColorRGB(158, 5, 8)
end

NOTE the use of the double equals sign to denote equality!!! A single equals
sign denotes definition (k = 1). Watch this one!

Other than that, the rest should be pretty plain sailing.

And another lesson complete! Take some time to play and see what you can
discover.

In our next lesson, we learn how to actually accept input directly into our Lua
window, the basis for tutorial and quiz applications.

Home < TI-Nspire Authoring < _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 3

