TI-725pire

Home + TI-Nspire Authoring < _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 4

Scripting Tutorial - Lesson 4

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

At this point, after three lessons, you should be reasonably comfortable with
painting text onto a Lua page, varying the size, style and color of that text,
and have some strategies for placing that text where you want it. By storing
variables in the names we use for the line numbers, we can easily call and
display those variables along with static text.

In this lesson, we go further into Lua by learning how to accept input typed
while the page is active. This opens up all sorts of possibilities for creating
truly interactive documents.

Lesson 4.1: Inputting text

Lua provides a range of simple and useful ways to capture events of many
different types. While the focus here will be on accepting keyboard entry, we
can just as easily respond to arrow keys, touchpad and mouse actions. For
our purposes here, we will collect the entry of keyboard characters, using
on.charin(char). We will create a variable called answer which will be made
up of whatever is typed on the keyboard (at least for letters, numbers and
regular characters).

We begin by defining the
variable answer as an empty
string.

When we run the function,
on.charln, each character
input from the keyboard is
added to the variable answer.
Note the use of the .. to
indicate concatenation, or
"glueing together" of strings.

answer = As each character is added to
answer, it is then stored in
TI-Nspire as the
variable,line3, that will be

function on.charln(char) displayed. In this way, we see
line3 built up character by
answer = answer..char character, as each is typed.

s " Here we introduce the
var.store("line3",answer)

-- Refresh the screen after each key is pressed. opposite of var.recall, which
grabs a TI-Nspire variable.
platform.window:invalidate() var.store("var", value)
actually writes a value to a
end variable in TI-Nspire called,

here, "var". If the variable does
not exist, this process creates
it. Now that is cool.

As each character is entered,



the screen is refreshed using
platform.window:invalidate().
This simply forces the screen
to repaint, taking account of
any changes that may have
just occurred.

function on.backspaceKey()
We also want to be able to

answer = correct errors, and so enable

string.usub(answer,0,string.len(answer)- the backspace key.

1

) This is a little more involved

var.store("line3",answer) than adding characters.
Instead, we use the string

platform.window:invalidate() command, string.usub which
returns the whole of answer

end less one character.

Using these two commands, any text
that is typed will be captured as the
variable answer and displayed in Multiply
line3. Because this is in the standard
format that we set up in the last

. . -§x3
lesson, the input and display of text
into line3 needs no further work. It
will now happen automatically. Just =

add the lines above to your script
before the on.paint function and you Correct! Press enter for a new question.
may now display questions and other
information in lines 1,2 and 4, and

any text entered will be shown in line3.

Three questions arise from the example shown here: How and where do you
enter the values shown on each line? How do you draw that nice blue box
around the answer? And how do you get it to recognise when the correct
answer has been entered?

Lesson 4.2: Playing Nicely Together

11 [12]13
The first of these questions leads to a

key point in understanding what is
happening here. There is an interplay
between the variables in TI-Nspire

and those in the Lua page. ) +
new » 3

Lua Quiz

Download the supporting files for this
lesson, and open and study the
document called script_tut4.tns. This b:=randInt(-5,5)+new-new » 3
is a simple algebra quiz document
that demonstrates the interplay
between variables in TI-Nspire and
those in Lua. You should notice that the values for linel, line2 and so on are
easily defined within TI-Nspire. Either using a Notes window (that may then
be hidden on a split screen by dragging it down out of sight), or writing a
small program and hiding it in a Notes window. Values such as, in our
example, the word "Multiply" and the random question are defined within TI-
Npire.

a: =randlnt(-5, 5)+new-new » -5

quiz() » Done

For our multiplication example, we generate two random numbers, a and b.
This is best done within a hidden Notes window, even though most

everything else will be generated within a little program, here called quiz().
If vour define random niimhers within a mare aeneral nroaram_ then everv



Jm e mrm i a e - ———

time that program is called, these values will be generated again. In an
example like this, every time you make a change to the page, such as
entering values, for example, the question will be regenerated. We don't
want this to happen - we want to control when a new question is created. To
do that, we define a variable called new (it doesn't matter what you call it).
Then as shown make new part of the calculation of the random numbers. A
simple way to do this is to add it and then subtract it. In this way, it does not

Cy meemee — e =g

affect the value of the result. However, every time new changes then the

values of a and b will also change!

Everything else happens in our little
quiz() program, as shown.

On page 1.3 we define what we want
to appear in lines 1 (for example,
linel:=a€Adda€ or linel:="Multiply")
2 and 4. We do not need to define
line3 as this will be our input.

We also define a variable called
"check” to be 1 if the answer (line3) is

"quiz" stored successfully

Define quiz():
Prgm
lines:=4
linel:="Multiply"
1ine2:=string(a;‘&" x " &string| b)
It expr(lin93_):expr|‘1ine2) Then
check:=1
line4:="Correct! Press enter for a new question."
Ise
check:=0
line4:="Type to enter your answer"
EndIf
EndPrgm

[

correct, or 0 otherwise. Of course,
when the answer is correct, the message at the bottom of the screen should
be different from otherwise. Notice the condition used here: we take
expr(line2) (the value of the question) and compare it to the value of the
answer typed in expr(line3) (the results)

Both new and check will actually be picked up by our Lua script and
determine what will happen under different conditions, explained below.

Lesson 4.3: Some Simple Graphics

The inbuilt graphics capability offered by Lua is quite extensive, and will be
dealt with in more detail in later lessons. For now, though, it would be neat
to be able to highlight our answer. One way to do that would be to draw a
box around line3 as shown on page 1.2 of script_tut4.lua. Study the lines
that follow.

gc:setColorRGB(20, 20, 138)

gc:setPen("medium", "smooth")

gc:drawPolyLine({0.1*w, h*(linecount-1)/(linecount+1) - 20,
0.9*w, h*(linecount-1)/(linecount+1) - 20,
0.9*w, h*(linecount-1)/(linecount+1) + 20,
0.1*w, h*(linecount-1)/(linecount+1) + 20,
0.1*w, h*(linecount-1)/(linecount+1) - 20 })

Not surprising to see the graphics context (gc) featured once again, along
with setColorRGB, and with two new commands: setPen (that takes as size
inputs such as "thin", "medium" or "thick", and for style, "smooth", "dotted"

or "dashed").

drawPolyLine takes a list (table) of x- and y-values to create the polygon
required. In this case, 5 ordered pairs define a rectangle, with width and
height defined as shown. Look closely at these values and see how they
work: vary them a little and see the results.

There is another command in Lua that we will meet called drawRect which
makes this even easier. It takes four inputs: top left x-coordinate, y-
coordinate, length and height of the rectangle. So for this example, we could
have defined the box using:

gc:.drawRect(0.1*w, h*(linecount-1)/(linecount+1) - 20, 0.8*w,

As Marc pointed out, the height of the rectangle would be much better
expressed (like the width) as a multiple of the height of the page (h). This
way, if we switch from handheld to computer view, the proportions should
remain the same. Your challenge: What would be a suitable multiple of h for
the height of our rectangle?



Lesson 4.4: Making Enter Work For Us

Wouldn't it be good if, when
you press enter after getting
the correct answer, it creates
a new question and wipes the
answer box clear, all ready
for a new entry?

To achieve this the Lua script
needs to know something: It
needs to know when the
answer is correct. It does this
by looking at our variable
check.

It then needs to generate new
values for a and b. It can do
this by sending a new value
to the variable new. Finally, it
will wipe line3 and the value
for answer cleared and ready
for a new entry.

Challenge 1

Suppose we wanted to add

something else: What if you
were to press enter when the
answer is not correct? At the
moment, nothing would
happen. But one option could
be that this would actually
reveal the correct answer.
This may or may not be
something you want to do
with your quiz, but can you
see how this might be
achieved?

end

Challenge 2

Suppose we add a slider and
call it, say type. Minimize it
and set it to run from 1 to 4.
When type=1, the quiz is for
addition, if 2, subtraction,
etc. How could this be
achieved?

function on.enterKey()

local ch = (var.recall("check") or 0)

local newer = (var.recall("new") or
1)

if ch == 1 then
var.store("line3","")

var.store("new",newer+1)

answer =
var.store("check",0)
end

platform.window:invalidate()

Well that was a big effort! Congratulations on making it to the end of the

first section of our Lua tutorials. At this point, there is probably value in

reviewing what you have learned so far. Make sure it all makes sense. Play
with different commands and try out your own ideas. Then move to lesson 5
in this sequence and try out some useful and cool applications for what we

have learned up to this point.

The next sequence of lessons will look at Lua's graphics capabilities,

including the use of images. But first, a chance to see a couple of examples

of what you might like to do with this stuff!

Home < _TI-Nspire Authoring < _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 4




