TI-725pire

Home + _TI-Nspire Authoring «_TI-Nspire Scripting HQ + Scripting Tutorial - Lesson 7

Scripting Tutorial - Lesson 7: Quick Start: Working with Images

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

Lua has quite powerful but simple image manipulation commands,
making it easy to import images into your Lua document and to
actually "play" with these. While TI-Nspire 3.0 supports inserting
images into TI-Nspire documents, there are as yet no options for
interacting with these - making them change size, or even appear and
disappear on the fly. This functionality is available using Lua.

Lesson 7.1: Setting up and Displaying your Image

The first step in
importing an image
into Lua is to
digitize it - to turn
it into a series of
characters which
can be manipulated
digitally. This may
be done using Tl's
own Scripting Tools
application,
available from the
link above. The
accompanying
video shows the
steps in this
process. Another
option is to use a
wonderful online
image converter
that will do the
same job.

Click anywhere on this image for a video demonstration

As shown, these
methods take an
image (in most
common formats),
convert it and (in

the case of the Tl
Scripting Tool)
place the digital
code on the ‘
clipboard. This may [*%|
then be pasted into | |
your Lua script
document. Note
the way in which
this digital code is
defined as a
variable in Lua
using the
image.new
command.

| Fe et Sewch View Encoding Language Settings Macr il L X

® | ¢ = . RE|xava

brldge 1 - Normal test file length:83 fines:4 Ln:d Col:21 Sel:0 Dos\Windows ANSI INS

image.new("..digital FRS—
code for image..") e X Fo0amme x X

< 0 cients connected 3 0 of 0 Students loggedin 11 Seftings Document View -

Wed 24. Aug 10:34:14 2011 - Script App loaded - C:/Users/Steve/Docume

Now all we have to
do is to tell the
script to "paint” the
image to the
screen, using the
now-familiar
on.paint function,
along with the
simple drawlmage
command. If we
have defined the
image as a variable
called bridgel,
then displaying it is
achieved using the
code shown here:

function on.paint(gc)
gc:.drawlmage(bridgel, 0, 0)

end

That is actually the heavy lifting done. Everything else just builds on
previous lessons to "tweak" our image display - to ensure that it fits
the window, for example, to center it in that window, and even to
control scale and to change images dynamically!

Lesson 7.2: Fitting our Image to the Window

We encountered the
window dimension
commands way back in

tutorial 1: function on.paint(gc)
platform.window:width local w =

and]) platform.window:width()
platform.window:height.

In our example, these may local h =

be used to center the platform.window:height()

image on the window,
along with the equivalent
dimension commands for
images:
image.width(image) and
image.height(image).
Study the code and make
sure everything makes
sense.

Note particularly the way
that the image is centered

?nghi% \év}re]gto}y'our image

fits reasonably well to the
window. But what if it is
too big, or too small? For
this we create a copy of
the image that is scaled.
image.copy(my_image,
scaleX *
image.width(my_image),
scaleY *
image.height(my_image))
as implied creates a copy
of the original image with
the option for different
scales for x and y
dimensions. For our
example, we will keep the
same aspect ratio as the
original image and define
a single scale factor.

Note the double use of
imw and imh: first for our
original image (bridgel)
and then again for the
scaled version.

local imw =
image.width(bridge1l)

local imh =
image.height(bridgel)

gc:.drawlmage(bridgel,
(w-imw)/2, (h - imh)/2)

end

function on.paint(gc)

local w =
platform.window:width()

local h =
platform.window:height()

local sc = 0.5

local imw =
image.width(bridgel)

local imh =
image.height(bridgel)

local im =
image.copy(bridgel, sc *
imw, sc * imh)

local imw =
image.width(im)

local imh =
image.height(im)

gc:drawlmage(im, (w -
imw)/2, (h - imh)/2)

end

So far so good. You
could stop here and
be able to insert an
image and play
around with the
scale until it fits
nicely. Nicer,
though, would be
to be able to
change that scale
on the fly - perhaps
by using the arrow
keys as we learned
in the last lesson!

Initially it is a good
idea to create the

Lesson 7.3: Making our Image Dynamic

function on.create()
timer.start(1/5)

end

function on.timer()
platform.window:invalidate()

end

variable that we will
use in our TI-
Nspire document - |
normally insert a
Geometry window
and hide the scale.
Then insert a slider
called scale, set to
run between 0 and
1 in steps of 0.1.
We can probably
dispose of this later
since we will
control the values
using arrow keys -
but if you wanted
the document to be
workable within the
Player, then the
arrow keys will be
of no use and a
slider would not go
astray!

These functions can
be defined prior to
the on.paint
function. As you
can see, they check
to see the value of
the variable scale
from the TI-Nspire
symbol table (if it
does not exist then
the value is set to
0.5). With each
press of an arrow
key, then, this value
is changed by 0.1,
either up or down,
and this new value
is stored in the
value of scale back
in TI-Nspire.

Note that the only
change to the
on.paint function is
to grab the current
value of scale and
define this as our
new Lua variable
sc. And it never
hurts to refresh the
screen after each
change - hence the
platform.invalidate
commands!

Now you can control the scale using the up and down arrow keys!

function on.arrowUp()

end

sc = (var.recall("scale") or
0.5)

var.store("scale", sc + 0.1)

function on.arrowDown()

end

sc = (var.recall("scale") or
0.5)

var.store("scale", sc - 0.1)

function on.paint(gc)

end

local w =
platform.window:width()

local h =
platform.window:height()

sc = (var.recall("scale") or
0.5)

imw = image.width(bridgel)

imh =
image.height(bridgel)

im = image.copy(bridgel,
sc * imw, sc * imh)

imw = image.width(im)
imh = image.height(im)

gc:.drawlmage(im, (w -
imw)/2, (h - imh)/2)

Lesson 7.4: Swapping Images on the Fly

Our final tweak is to define
several images and use the left
and right arrow keys to switch
between these! back to the
Scripting Tool and digitize a
couple of other images - | am
using the stock bridge images
that are installed in your TI-
Nspire Images folder when 3.0
is installed. | define these as
bridge2 and bridge3.

Create a slider variable, called
choose in your Geometry
window, and set it to run from
1 to 3.

As we just did for the scale, we
define the left and right arrow
keys to increment the values of
our variable choose and refer
to it in the Lua script as ch.

Within our paint function, then,
once again recall the current
value of choose and then
define the image using an
if..then..elseif..end loop.

You should now be able to
switch between images using
the left and right arrow keys!

Click anywhere on this image to view a
short video demonstration

9 scale=s

~ choose=3

function on.create()
timer.start(1/5)

end

function on.timer()
platform.window:invalidate()

end

function on.arrowLeft()

ch = (var.recall("choose") or
1)

var.store("choose", ch - 1)
platform.window:invalidate()
end
function on.arrowRight()

ch = (var.recall("choose") or
1)

var.store("choose", ch + 1)
platform.window:invalidate()

end

function on.paint(gc)

local W =
platform.window:width()

local H =
platform.window:height()

sc = (var.recall("scale") or
0.5)

ch = (var.recall("choose") or
1)

if ch == 1 then

show =
bridgel

elseif ch == 2 then

show =
bridge2

else

show =
bridge3

end

local imw =
image.width(show)

local imh =

image.height(show)

local im =
image.copy(show, Scale *
imw, Scale * imh)

Congratulations! You now have
all the ingredients you need to
digitize, define, insert, scale
and manipulate images using local imw = image.width(im)
Lua. Our final lessons in this
sequence will look at creating
your own graphics using Lua.

local imh =
image.height(im)

gc:drawlmage(im, (W -
imw)/2, (H - imh)/2)

platform.window:invalidate()

end

Lesson 7.5: Controlling the Image Position

What if you want to
move the image
around on the
screen? While this
can be done entirely
within Lua using the
arrow commands as
described previously,
another neat option
might be to split the
window, place a
Graph window
underneath, and
control the image by Click anywhere on this image for a video demonstration

moving a point A Pl > shuttlecock
around on the Graph E —

window. To do this,

store the x- and y- X
coordinates of the

point (say px and py)
and then use these
with your arrow

commands in Lua to
move the image.

This is demonstrated
in the

shuttlecock.tns file % scale = 10. P
that is included with

this lesson's

downloads. Included
too you will find the

image that was used

and the Lua script

for you to study. In

problem 2 of this

TNS file, the point P

is linked to a

parabola so that the

motion of the

shuttlecock can be

modelled and even

animated!

NOTE: One
advantage of adding
sliders and
draggable points is
that the document is
then able to be used
with the Player. If we
just rely on arrow
keys and keyboard
controls, then the
Player is not an
option.

Lesson 7.6: A Simpler Approach

Using arrow keys and
general keyboard
controls (including
enterKey, escapeKey and
tabKey) are great ways to
ensure that a document
you create will work
seamlessly on the
handheld. | cannot stress
this enough, because it
may be a simple thing
but it is a significant way
in which Lua-based
documents can be written
to be much more user-
friendly than "native"
documents.

Even though the
applications shown in the
lessons all involve using
the arrow keys to grab a
variable from TI-Nspire,
make some change and
then store back to that
variable, this is not the
only way to set up
keyboard controls. In
fact, it is much simpler to
just use Lua's own
variables and not have to
reply on "outside" ones at
all.

Suppose you have
created the digital
versions of the three
bridge images referred to
in Lesson 7. so at the
start of our document, we
have definitions for
bridgel, bridge2 and

function on.resize()

W =
platform.window:width()

H=
platform.window:height()

Scale =1
Choose =1
end
function on.arrowUp()
Choose = Choose + 1
end
function on.arrowDown()
Choose = Choose - 1

end

bridge3.

Then we could do the
following for the
remainder of our script:

Define two variables for
scale and choose: these
days | tend to do this in a
"resize" function, since
this always gets called
when the page is created,
and also when any
change in size occurs -
like switching between
handheld and computer
view. Here | am going to
start a good habit of
naming Global variables
with a Capital letter.

Do you see how much
simpler this approach is?

So why go to all the
trouble of using var.recall
and var.store to move
variables back and forth
between Lua and TI-
Nspire? One reason is
that, while keyboard
controls are great for the
handheld, they are
actually useless if you
want your document to
run on the Player, since it
only supports grabbing
and dragging things. No
keyboard input.

So for the moment, we
are leaving TI-Nspire
sliders in place and
linking to them as well as
adding keyboard
commands. This allows
our document to be used
anywhere.

Later (lessons 11-15) you
will learn how to enable
mouse controls, so that
you can create your own
controls and use these
instead of TI-Nspire
sliders. Put these
together with our
keyboard controls that
you have just learned and
you have an optimal
document. Have a look at
the sample documents on

the Scripting HQ page

function on.arrowLeft()

end

Scale = Scale - 0.1

function on.arrowRight()

end

Scale = Scale + 0.1

function on.paint(gc)

end

if Choose == 1 then

show =
bridgel
elseif Choose == 2 then
show =
bridge2
else
show =
bridge3
end
local imw =

image.width(show)

local imh =
image.height(show)

local im =
image.copy(show, Scale *
imw, Scale * imh)

local imw = image.width(im)

local imh =
image.height(im)

gc:drawlmage(im, (W -
imw)/2, (H - imh)/2)

platform.window:invalidate()

where you access these
tutorials and you will see
examples of exactly this.

Next we learn how to use Lua's own graphics capabilities to create our
own images.

Home «_TI-Nspire Authoring «_TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 7

