TI-72spire’

Home + _TI-Nspire Authoring «_TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 9

Scripting Tutorial - Lesson 9: Graphical Shape
Numbers

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

It is time to try and put together everything
that we have learned so far. In this lesson and
lesson 10 we will use Lua's graphic commands
along with many of the enhancements we
have learned to create documents that are
both useful, clear and easy to use. We will
begin with the graphical display of shape
numbers - square, rectangular and triangular
numbers.

Take a
moment to
watch the
accompanying
movie and
then have a
play with this
document
using the
Player to get a
feel for the
possibilities
and for some
of the design
choices that
have been
made. For
example,
while it is
great to use
arrow keys
and enter,
escape and
even tab keys



to make
control by
both
computer and
handheld
easy, if we
want our
documents to
be usable with
the Player
then it is
worth leaving
in the sliders.

In the
example
shown,
pressing up
and down
arrows
controls the
value of n,
increasing
and
decreasing
the number
being studied.
Left and right
arrows show
the three
options -
square,
rectangular
and triangular
numbers.
Pressing enter
shows
different
views - the
shape created
using circles,
with a border,
and using
squares.
finally,
pressing the
tab key steps
through the
building up of
that pattern,

making it easy

to see the
relationships
involved -

Click anywhere on this image for a video demonstration

Square Numbers: 1+1 =1

O |

A

view =0,

type=1.

tab=-1.
1

Launch Player




square
numbers are
the sums of
odd numbers,
rectangular
numbers the
sum of even
numbers, and
because every
rectangle is
double the
corresponding
triangle, the
triangular
numbers are
built by
adding the
counting
numbers.
Pressing
escape takes
you back
through this
progression.

Lesson 9.1: Building a Grid Pattern

We will begin
by using
drawLine to
create a
square grid
corresponding
to the current
value of n. But
first, some
practical
considerations
- plan your
design and
layout! We
would like our
grid to lie
centered on
the page. We
know how to
do that. But
we would also
like it if the



size of our
grid remained
within the
visible page,
with a bit of
white space
around it. So
we could
divide the
width and
height of the
page up by
the value of n
(and a bit
more for
white space).
Will also need
a slider for n
(and more
sliders to
follow!). So
set up a split
page with a
Geometry
window and
slider on one
side and our
script window
for the main
window.

Look closely
at the code
here. We
define a
function
(drawArray)
that takes as
its arguments
the current
value of n, the
x and y
coordinates of
the starting
position, and
the length and
width of each
cell.

You will see
that the
drawlLine
function takes
four

function drawArray(number, X, y, length,

height, gc)

for k = 0, number do

for m = 0, number do

gc:drawLine(
X,

y + height *
m,

X + length *
number,

y + height *
m)

gc:.drawLine(

X + length *
k,

Y



arguments:
the x and y
coordinates of
start and end
points. We will
use one
variable (m) to
define the
horizontal
lines and the
other (k) for
the vertical
lines. Again,
study the
code provided
to see one
way in which
to achieve
what we
desire.

Once the
function is
defined, we
need to paint
the screen to
actually see it.
here we
choose to
define the
required
variables
within the
on.paint
function.
Hence we
define the
window width
and height,
recall the
current value
of n and use it
to calculate
the x and y
coordinates
for the
starting point,
and the width
and length of
the cells. For
the latter
values, we
divide the
window

end

X + length *
K,

y + height *
number)

end

end

function on.paint(gc)

end

w = platform.window:width()
h = platform.window:height()
hum = var.recall("n") or 1

xval = math.floor(w/(num+4))
yval = math.floor(h/(num+4))
X =WwW/2 -num * xval / 2
y=h/2 - num *yval / 2
gc:setPen("thin", "smooth")
gc:setColorRGB(165,42,42)

drawArray(num, x, y, xval, yval,
gc)



dimensions by
the value of n
(and a little
more), then
take the
lowest integer
value. This
will ensure
that our
model always
remains
within the
screen
dimensions.
Finally, we set
the color and
the pen values
and call our
function,
drawArray.

This produces
a dynamic
square grid,
as required,
controlled by
the current
value of a
variable n
within TI-
Nspire.

Lesson 9.2: Varying our Grid Pattern

So we have
a square
grid - we
would like
to have two
variations
on this
theme: a
rectangular
grid (with
one side
one lonaer



other) and
a triangular
grid. We
will control
these with
a slider
variable we
will call

type.

First, the
rectangular
numbers:
essentially
the same
script as
for the
square
numbers,
but with
one
variable
one more
than the
other.

Recall the
value of
variable
type at the
start of our
drawArray
function,
then use it
as the basis
of a test: if
type ==
then (the
square
routine)
elseif type
== 2 then
(rectangles)
else
(triangles)
end.

The
triangle

elseif types == 2 then
for k = 0, number + 1 do
for m = 0, number do
gc:drawLine(
X,

y + height *
m,

X + length *
(number + 1),

y + height *
m)

gc:drawLine(

X + length *
k-



follows -
the main
variation
from the
two
previous
forms is
that,
instead of
the second
variable
running
from O or
1, it begins
at the
current
value for k,
thus
indenting
each line to
form the
triangle. In
order to
close the
figure, it
was
necessary
to add an
additional
line at top
and
another at
the right
side -
hence the
four lines
in this
script
where the
others had
only two.

Add the
line which
defines the
variable
types from
type and
the first
condition

e

Y

X + length *
k,

y + height *
number)

end
end
else

gc.drawline(x, y, x + length * (number+1) -
length, y)

gc.drawlLine(x + length * number, y, x +
length * number, y + height * number)

for k = 1, number do
for m = k, number do

gc:drawLine(x
+ length*(m-
1), y + height
*m, X +
length *
number, y +
height * m)

gc:drawLine(x
+ length * (k-
1),y, x +
length * (k-
1), y + height
* k)

end
end

end



(if types
== 1 then)
at the start
of the
function
definition,
and this
script will
deliver the
three
shapes
drawn
using a
grid.

In the final
tutorial in
this series
this script
is further
enhanced
using
circles to
dynamically
build each
of the
patterns,
and our
usual arrow
key
controls
will be
added.

Home « _TI-Nspire Authoring « _TI-Nspire Scripting HQ « Scripting Tutorial -
Lesson 9




